Skip to main content

Advertisement

Log in

Fmoc-Conjugated PEG-Vitamin E2 Micelles for Tumor-Targeted Delivery of Paclitaxel: Enhanced Drug-Carrier Interaction and Loading Capacity

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The purpose of this study is to develop an improved drug delivery system for enhanced paclitaxel (PTX) loading capacity and formulation stability based on PEG5K-(vitamin E)2 (PEG5K-VE2) system. PEG5K-(fluorenylmethoxycarbonyl)-(vitamin E)2 (PEG5K-FVE2) was synthesized using lysine as the scaffold. PTX-loaded PEG5K-FVE2 micelles were prepared and characterized. Fluorescence intensity of Fmoc in the micelles was measured as an indicator of drug-carrier interaction. Cytotoxicity of the micelle formulations was tested on various tumor cell lines. The therapeutic efficacy and toxicity of PTX-loaded micelles were investigated using a syngeneic mouse model of breast cancer (4T1.2). Our data suggest that the PEG5K-FVE2 micelles have a low CMC value of 4 μg/mL and small sizes (~60 nm). The PTX loading capacity of PEG5K-FVE2 micelles was much higher than that of PEG5K-VE2 micelles. The Fmoc/PTX physical interaction was clearly demonstrated by a fluorescence quenching assay. PTX-loaded PEG5K-FVE2 micelles exerted more potent cytotoxicity than free PTX or Taxol formulation in vitro. Finally, intravenous injection of PTX-loaded PEG5K-FVE2 micelles showed superior anticancer activity compared with PEG5K-VE2 formulation with minimal toxicity in a mouse model of breast cancer. In summary, incorporation of a drug-interactive motif (Fmoc) into PEG5K-VE2 micelles represents an effective strategy to improve the micelle formulation for the delivery of PTX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

PTX:

Paclitaxel

PEG5K-VE2 :

PEG5K-(vitamin E)2

PEG5K-FVE2 :

PEG5K-(fluorenylmethoxycarbonyl)-(vitamin E)2

EPR:

Enhanced permeability and retention

TPGS:

d-alpha-tocopheryl polyethylene glycol (PEG)-1000 succinate

CMC:

Critical micelle concentration

DLS:

Dynamic light scattering

DLC:

Drug loading capacity

DLE:

Drug loading efficiency

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

AST:

Aspartate aminotransferase

ALT:

Alanine aminotransferase

PEI:

Polyethylenimine

References

  1. Horwitz SB. Taxol (paclitaxel): mechanisms of action. Ann Oncol. 1994;5 Suppl 6:S3–6.

    PubMed  Google Scholar 

  2. Soga O, van Nostrum CF, Fens M, Rijcken CJ, Schiffelers RM, Storm G, et al. Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. J Control Release. 2005;103:341–53.

    Article  PubMed  CAS  Google Scholar 

  3. Gao Z, Lukyanov AN, Singhal A, Torchilin VP. Diacyllipid-polymer micelles as nanocarriers for poorly soluble anticancer drugs. Nano Lett. 2002;2:979–82.

    Article  CAS  Google Scholar 

  4. Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, et al. Phase II study of NK105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Invest New Drugs. 2012;30:1621–7.

    Article  PubMed  CAS  Google Scholar 

  5. Kim DW, Kim SY, Kim HK, Kim SW, Shin SW, Kim JS, et al. Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol. 2007;18:2009–14.

    Article  PubMed  Google Scholar 

  6. Yu L, Bridgers A, Polli J, Vickers A, Long S, Roy A, et al. Vitamin E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm Res. 1999;16:1812–7.

    Article  PubMed  CAS  Google Scholar 

  7. Win KY, Feng SS. In vitro and in vivo studies on vitamin E TPGS-emulsified poly(D, L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials. 2006;27:2285–91.

    Article  PubMed  CAS  Google Scholar 

  8. Muthu MS, Kulkarni SA, Xiong JQ, Feng SS. Vitamin E TPGS coated liposomes enhanced cellular uptake and cytotoxicity of docetaxel in brain cancer cells. Int J Pharm. 2011;421:332–40.

    Article  PubMed  CAS  Google Scholar 

  9. Cao N, Feng SS. Doxorubicin conjugated to D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS): conjugation chemistry, characterization, in vitro and in vivo evaluation. Biomaterials. 2008;29:3856–65.

    Article  PubMed  CAS  Google Scholar 

  10. Dintaman JM, Silverman JA. Inhibition of P-glycoprotein by D-alpha-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm Res. 1999;16:1550–6.

    Article  PubMed  CAS  Google Scholar 

  11. Collnot EM, Baldes C, Schaefer UF, Edgar KJ, Wempe MF, Lehr CM. Vitamin E TPGS P-glycoprotein inhibition mechanism: influence on conformational flexibility, intracellular ATP levels, and role of time and site of access. Mol Pharm. 2010;7:642–51.

    Article  PubMed  CAS  Google Scholar 

  12. Mi Y, Liu YT, Feng SS. Formulation of Docetaxel by folic acid-conjugated D-alpha-tocopheryl polyethylene glycol succinate 2000 (Vitamin E TPGS(2 k)) micelles for targeted and synergistic chemotherapy. Biomaterials. 2011;32:4058–66.

    Article  PubMed  CAS  Google Scholar 

  13. Wang J, Sun J, Chen Q, Gao Y, Li L, Li H, et al. Star-shape copolymer of lysine-linked di-tocopherol polyethylene glycol 2000 succinate for doxorubicin delivery with reversal of multidrug resistance. Biomaterials. 2012;33:6877–88.

    Article  PubMed  CAS  Google Scholar 

  14. Lu J, Huang Y, Zhao W, Chen Y, Li J, Gao X, et al. Design and characterization of PEG-Derivatized Vitamin E as a nanomicellar formulation for delivery of paclitaxel. Mol Pharm. 2013;10:2880–90.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Gao X, Huang Y, Makhov AM, Epperly M, Lu J, Grab S, et al. Nanoassembly of surfactants with interfacial drug-interactive motifs as tailor-designed drug carriers. Mol Pharm. 2013;10:187–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Lu J, Huang Y, Zhao W, Marquez RT, Meng X, Li J, et al. PEG-derivatized embelin as a nanomicellar carrier for delivery of paclitaxel to breast and prostate cancers. Biomaterials. 2013;34:1591–600.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Zhang P, Lu J, Huang Y, Zhao W, Zhang Y, Zhang X, et al. Design and evaluation of a PEGylated lipopeptide equipped with drug-interactive motifs as an improved drug carrier. AAPS J. 2014;16:114–24.

    Article  PubMed  CAS  Google Scholar 

  18. Sezgin Z, Yuksel N, Baykara T. Preparation and characterization of polymeric micelles for solubilization of poorly soluble anticancer drugs. Eur J Pharm Biopharm. 2006;64:261–8.

    Article  PubMed  CAS  Google Scholar 

  19. Savic R, Luo L, Eisenberg A, Maysinger D. Micellar nanocontainers distribute to defined cytoplasmic organelles. Science. 2003;300:615–8.

    Article  PubMed  CAS  Google Scholar 

  20. Li X, Yang Z, Yang K, Zhou Y, Chen X, Zhang Y, et al. Self-assembled polymeric micellar nanoparticles as nanocarriers for poorly soluble anticancer drug ethaselen. Nanoscale Res Lett. 2009;4:1502–11.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Latere Dwan'Isa JP, Rouxhet L, Préat V, Brewster ME, Ariën A. Prediction of drug solubility in amphiphilic di-block copolymer micelles: the role of polymer-drug compatibility. Pharmazie. 2007;62:499–504.

    PubMed  Google Scholar 

  22. Kim SH, Tan JP, Nederberg F, Fukushima K, Colson J, Yang C, et al. Hydrogen bonding-enhanced micelle assemblies for drug delivery. Biomaterials. 2010;31:8063–71.

    Article  PubMed  CAS  Google Scholar 

  23. Yang C, Attia AB, Tan JP, Ke X, Gao S, Hedrick JL, et al. The role of non-covalent interactions in anticancer drug loading and kinetic stability of polymeric micelles. Biomaterials. 2012;33:2971–9.

    Article  PubMed  CAS  Google Scholar 

  24. Giacomelli C, Schmidt V, Borsali R. Specific interactions improve the loading capacity of block copolymer micelles in aqueous media. Langmuir. 2007;23:6947–55.

    Article  PubMed  CAS  Google Scholar 

  25. Yokoyama M, Okano T, Sakurai Y, Suwa S, Kataoka K. Introduction of cisplatin into polymeric micelle. J Control Release. 1996;39:351–6.

    Article  CAS  Google Scholar 

  26. Nishiyama N, Kato Y, Sugiyama Y, Kataoka K. Cisplatin-loaded polymer-metal complex micelle with time-modulated decaying property as a novel drug delivery system. Pharm Res. 2001;18:1035–41.

    Article  PubMed  CAS  Google Scholar 

  27. Huh KM, Lee SC, Cho YW, Lee J, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101:59–68.

    Article  PubMed  CAS  Google Scholar 

  28. Kim JY, Kim S, Pinal R, Park K. Hydrotropic polymer micelles as versatile vehicles for delivery of poorly water-soluble drugs. J Control Release. 2011;152:13–20.

    Article  PubMed  CAS  Google Scholar 

  29. Opanasopit P, Yokoyama M, Watanabe M, Kawano K, Maitani Y, Okano T. Block copolymer design for camptothecin incorporation into polymeric micelles for passive tumor targeting. Pharm Res. 2004;21:2001–8.

    Article  PubMed  CAS  Google Scholar 

  30. Carstens MG, de Jong PH, van Nostrum CF, Kemmink J, Verrijk R, de Leede LG, et al. The effect of core composition in biodegradable oligomeric micelles as taxane formulations. Eur J Pharm Biopharm. 2008;68:596–606.

    Article  PubMed  CAS  Google Scholar 

  31. Shirai K, Matsuoka M, Fukunishi K. Fluorescence quenching by intermolecular π-π interactions of 2,5-bis(N, N-dialkylamino)-3,6-dicyanopyrazines. Dyes Pigments. 1999;42:95–101.

    Article  CAS  Google Scholar 

  32. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol. 2007;2:249–55.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Danhier F, Magotteaux N, Ucakar B, Lecouturier N, Brewster M, Preat V. Novel self-assembling PEG-p-(CL-co-TMC) polymeric micelles as safe and effective delivery system for paclitaxel. Eur J Pharm Biopharm. 2009;73:230–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by NIH grants (R01GM102989 and R21CA155983) and a DOD grant (BC09603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

(DOCX 156 kb)

Fig. S2

(DOCX 121 kb)

Fig. S3

(DOCX 591 kb)

Table S1

(DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Huang, Y., Zhao, W. et al. Fmoc-Conjugated PEG-Vitamin E2 Micelles for Tumor-Targeted Delivery of Paclitaxel: Enhanced Drug-Carrier Interaction and Loading Capacity. AAPS J 16, 1282–1291 (2014). https://doi.org/10.1208/s12248-014-9651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9651-2

KEY WORDS

Navigation