Skip to main content

Advertisement

Log in

Compartmental Tissue Distribution of Antibody Therapeutics: Experimental Approaches and Interpretations

  • Mini-Review
  • Theme: ADME of Therapeutic Proteins
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Monoclonal antibodies have provided many validated and potential new therapeutic candidates for various diseases encompassing the realms of neurology, ophthalmology, immunology, and especially oncology. The mechanism of action for these biological molecules typically involves specific binding to a soluble ligand or cell surface protein in order to block or alter a molecular pathway, induce a desired cellular response, or deplete a target cell. Many antigens reside within the interstitial space, the fluid-filled compartment that lies between the outer endothelial vessel wall and the plasma membranes of cells. This mini-review examines the concepts relevant to the kinetics and behavior of antibodies within the interstitium with a special emphasis on radiometric measurement of quantitative pharmacology. Molecular probes are discussed to outline chemical techniques, selection criteria, data interpretation, and relevance to the study of antibody pharmacokinetics. The importance of studying the tissue uptake of antibodies at a compartmental level is highlighted, including a brief overview of receptor occupancy and its interpretation in radiotracer studies. Experimental methods for measuring the spatial composition of tissues are examined in terms of relative vascular, interstitial, and cellular volumes using solid tumors as a representative example. Experimental methods and physiologically based pharmacokinetic modeling are introduced as distinct approaches to distinguish between free and bound fractions of interstitial antibody. Overall, the review outlines the available methods for pharmacokinetic measurements of antibodies and physiological measurements of the compartments that they occupy, while emphasizing that such approaches may not fully capture the complexities of dynamic, heterogeneous tumors and other tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ADME:

Adsorption distribution, metabolism, and excretion

Fc:

Crystallizable fragment

DTPA:

Diethylenetriaminepentaacetic acid

DOTA:

1,4,7,20-Tetraazacyclododecane N,N′,N″,N″′-tetraacetic acid

%ID/g:

Percentage of injected dose per gram of tissue

C tissue :

Whole-tissue antibody concentration (μg/mL)

RO:

Receptor occupancy

AR :

Antibody–receptor complex

R :

Free receptor

A :

Free antibody

k on/k off :

Rates of association/dissociation

K D :

Dissociation constant

CPM:

Counts per minute

V v :

Vascular volume

V i :

Interstitial volume

C b :

Concentration of antibody in whole blood

C tissue, blood-corrected :

Blood-corrected tissue concentration

C i :

Concentration of antibody in interstitial fluid

ϕ:

Fractional interstitial volume

γ :

Fractional vascular volume

k :

Rate of extravasation from blood to interstitial space

L :

Rate of lymphatic fluid flow

K a :

Association constant

B 0 :

Total number of binding sites

RBC:

Red blood cell

REFERENCES

  1. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58.

    Article  PubMed  CAS  Google Scholar 

  2. Reichert JM, Valge-Archer VE. Development trends for monoclonal antibody cancer therapeutics. Nat Rev Drug Discov. 2007;6(5):349–56.

    Article  PubMed  CAS  Google Scholar 

  3. Wiig H, Tenstad O, Iversen PO, Kalluri R, Bjerkvig R. Interstitial fluid: the overlooked component of the tumor microenvironment? Fibrogenesis Tissue Repair. 2010;3:12.

    Article  PubMed  Google Scholar 

  4. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    PubMed  CAS  Google Scholar 

  5. Minchinton AI, Tannock IF. Drug penetration in solid tumours. Nat Rev Cancer. 2006;6(8):583–92.

    Article  PubMed  CAS  Google Scholar 

  6. Thurber GM, Zajic SC, Wittrup KD. Theoretic criteria for antibody penetration into solid tumors and micrometastases. J Nucl Med. 2007;48(6):995–9.

    Article  PubMed  CAS  Google Scholar 

  7. Boswell CA, Tesar DB, Mukhyala K, Theil FP, Fielder PJ, Khawli LA. Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem. 2010;21(12):2153–63.

    Article  PubMed  CAS  Google Scholar 

  8. Levitt DG. The pharmacokinetics of the interstitial space in humans. BMC Clin Pharmacol. 2003;3:3.

    Article  PubMed  Google Scholar 

  9. Wiig H, Gyenge CC, Tenstad O. The interstitial distribution of macromolecules in rat tumours is influenced by the negatively charged matrix components. J Physiol. 2005;567(Pt 2):557–67.

    Article  PubMed  CAS  Google Scholar 

  10. Sung C, Youle RJ, Dedrick RL. Pharmacokinetic analysis of immunotoxin uptake in solid tumors: role of plasma kinetics, capillary permeability, and binding. Cancer Res. 1990;50(22):7382–92.

    PubMed  CAS  Google Scholar 

  11. Covell DG, Barbet J, Holton OD, Black CD, Parker RJ, Weinstein JN. Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res. 1986;46(8):3969–78.

    PubMed  CAS  Google Scholar 

  12. Weinstein JN, Eger RR, Covell DG, Black CD, Mulshine J, Carrasquillo JA, et al. The pharmacology of monoclonal antibodies. Ann N Y Acad Sci. 1987;507:199–210.

    Article  PubMed  CAS  Google Scholar 

  13. Tabrizi M, Funelas C, Suria H. Application of quantitative pharmacology in development of therapeutic monoclonal antibodies. AAPS J. 2010;12(4):592–601.

    Article  PubMed  CAS  Google Scholar 

  14. Holton OD, Black CD, Parker RJ, Covell DG, Barbet J, Sieber SM, et al. Biodistribution of monoclonal IgG1, F(ab’)2, and Fab’ in mice after intravenous injection. Comparison between anti-B cell (anti-Lyb8.2) and irrelevant (MOPC-21) antibodies. J Immunol. 1987;139(9):3041–9.

    PubMed  CAS  Google Scholar 

  15. Pastuskovas CV, Mundo EE, Williams SP, Nayak TK, Ho J, Ulufatu S, et al. Effects of anti-VEGF on pharmacokinetics, biodistribution and tumor penetration of trastuzumab in a preclinical breast cancer model. Mol Cancer Ther. 2012;11(3):752–62. doi:10.1158/1535-7163.mct-11-0742-t.

    Article  PubMed  CAS  Google Scholar 

  16. Bumbaca D, Xiang H, Boswell CA, Port RE, Stainton SL, Mundo EE, et al. Maximizing anti-neuropilin-1 tumour exposure requires saturation of non-tumour tissue antigenic sinks in mice. Br J Pharmacol. 2012;166(1):368–77.

    Article  PubMed  CAS  Google Scholar 

  17. Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs. 2010;24(1):23–39. doi:10.2165/11530560-000000000-00000.

    Article  PubMed  CAS  Google Scholar 

  18. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8.

    Article  PubMed  CAS  Google Scholar 

  19. Prabhu S, Boswell CA, Leipold D, Khawli LA, Li D, Lu D, et al. Antibody delivery of drugs and radionuclides: factors influencing clinical pharmacology. Ther Deliv. 2011;2(6):769–91. doi:10.4155/tde.11.41.

    Article  PubMed  CAS  Google Scholar 

  20. Chizzonite R, Truitt T, Podlaski FJ, Wolitzky AG, Quinn PM, Nunes P, et al. IL-12: monoclonal antibodies specific for the 40-kDa subunit block receptor binding and biologic activity on activated human lymphoblasts. J Immunol. 1991;147(5):1548–56.

    PubMed  CAS  Google Scholar 

  21. Boswell CA, Brechbiel MW. Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol. 2007;34(7):757–78.

    Article  PubMed  CAS  Google Scholar 

  22. Wall DA, Maack T. Endocytic uptake, transport, and catabolism of proteins by epithelial cells. Am J Physiol. 1985;248(1 Pt 1):C12–20.

    PubMed  CAS  Google Scholar 

  23. Boswell CA, Mundo EE, Zhang C, Bumbaca D, Valle NR, Kozak KR, et al. Impact of drug conjugation on pharmacokinetics and tissue distribution of anti-STEAP1 antibody-drug conjugates in rats. Bioconjug Chem. 2011;22(10):1994–2004.

    Article  PubMed  CAS  Google Scholar 

  24. Shih LB, Thorpe SR, Griffiths GL, Diril H, Ong GL, Hansen HJ, et al. The processing and fate of antibodies and their radiolabels bound to the surface of tumor cells in vitro: a comparison of nine radiolabels. J Nucl Med. 1994;35(5):899–908.

    PubMed  CAS  Google Scholar 

  25. Perera RM, Zoncu R, Johns TG, Pypaert M, Lee FT, Mellman I, et al. Internalization, intracellular trafficking, and biodistribution of monoclonal antibody 806: a novel anti-epidermal growth factor receptor antibody. Neoplasia. 2007;9(12):1099–110.

    Article  PubMed  CAS  Google Scholar 

  26. Morell A, Terry WD, Waldmann TA. Metabolic properties of IgG subclasses in man. J Clin Invest. 1970;49(4):673–80.

    Article  PubMed  CAS  Google Scholar 

  27. Spiegelberg HL, Fishkin BG, Grey HM. Catabolism of human gammaG-immunoglobulins of different heavy chain subclasses. I. Catabolism of gammaG-myeloma proteins in man. J Clin Invest. 1968;47(10):2323–30.

    Article  PubMed  CAS  Google Scholar 

  28. Rogers BE, Franano FN, Duncan JR, Edwards WB, Anderson CJ, Connett JM, et al. Identification of metabolites of 111In-diethylenetriaminepentaacetic acid-monoclonal antibodies and antibody fragments in vivo. Cancer Res. 1995;55(23 Suppl):5714s–20s.

    PubMed  CAS  Google Scholar 

  29. Ploeger BA, van der Graaf PH, Danhof M. Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet. 2009;24(1):3–15.

    Article  PubMed  CAS  Google Scholar 

  30. Kenakin T. Receptor theory. Current Protocols in Pharmacology. 2008; Unit 1.2. doi:10.1002/0471141755.ph0102s41.

  31. Yang FE, Brown RS, Koral KF, Clavo AC, Jackson GA, Wahl RL. Quantitative autoradiographic evaluation of the influence of protein dose on monoclonal antibody distribution in human ovarian adenocarcinoma xenografts. Cancer Immunol Immunother. 1992;35(6):365–72.

    Article  PubMed  CAS  Google Scholar 

  32. Thurber GM, Schmidt MM, Wittrup KD. Factors determining antibody distribution in tumors. Trends Pharmacol Sci. 2008;29(2):57–61.

    PubMed  CAS  Google Scholar 

  33. Beckman RA, von Roemeling R, Scott AM. Monoclonal antibody dose determination and biodistribution into solid tumors. Ther Deliv. 2011;2(3):333–44. doi:10.4155/tde.10.91.

    Article  PubMed  CAS  Google Scholar 

  34. Baxter LT, Zhu H, Mackensen DG, Butler WF, Jain RK. Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res. 1995;55(20):4611–22.

    PubMed  CAS  Google Scholar 

  35. Boswell CA, Ferl GZ, Mundo EE, Schweiger MG, Marik J, Reich MP, et al. Development and evaluation of a novel method for preclinical measurement of tissue vascular volume. Mol Pharm. 2010;12:12.

    Google Scholar 

  36. Boswell CA, Ferl GZ, Mundo EE, Bumbaca D, Schweiger MG, Theil FP, et al. Effects of anti-VEGF on predicted antibody biodistribution: roles of vascular volume, interstitial volume, and blood flow. PLoS One. 2011;6(3):e17874.

    Article  PubMed  CAS  Google Scholar 

  37. Wiig H, Aukland K, Tenstad O. Isolation of interstitial fluid from rat mammary tumors by a centrifugation method. Am J Physiol Heart Circ Physiol. 2003;284(1):H416–24.

    PubMed  CAS  Google Scholar 

  38. Lee JW, Kelley M, King LE, Yang J, Salimi-Moosavi H, Tang MT, et al. Bioanalytical approaches to quantify “total” and “free” therapeutic antibodies and their targets: technical challenges and PK/PD applications over the course of drug development. AAPS J. 2011;13(1):99–110.

    Article  PubMed  CAS  Google Scholar 

  39. Danhof M, de Jongh J, De Lange EC, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400.

    Article  PubMed  CAS  Google Scholar 

  40. Shockley TR, Lin K, Sung C, Nagy JA, Tompkins RG, Dedrick RL, et al. A quantitative analysis of tumor specific monoclonal antibody uptake by human melanoma xenografts: effects of antibody immunological properties and tumor antigen expression levels. Cancer Res. 1992;52(2):357–66.

    PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Ruedi Port, Frank-Peter Theil, Gregory Ferl, and Martin Brechbiel for helpful discussions.

Disclosure Statement

All authors hold financial interest in Hoffmann-La Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Andrew Boswell.

Additional information

Guest Editors: Craig Svensson, Joseph Balthasar, and Frank-Peter Theil

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boswell, C.A., Bumbaca, D., Fielder, P.J. et al. Compartmental Tissue Distribution of Antibody Therapeutics: Experimental Approaches and Interpretations. AAPS J 14, 612–618 (2012). https://doi.org/10.1208/s12248-012-9374-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-012-9374-1

KEY WORDS

Navigation