Skip to main content
Log in

Role of Glycosylation in Conformational Stability, Activity, Macromolecular Interaction and Immunogenicity of Recombinant Human Factor VIII

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Factor VIII (FVIII) is a multi-domain glycoprotein that is an essential cofactor in the blood coagulation cascade. Its deficiency or dysfunction causes hemophilia A, a bleeding disorder. Replacement using exogenous recombinant human factor VIII (rFVIII) is the first line of therapy for hemophilia A. The role of glycosylation on the activity, stability, protein–lipid interaction, and immunogenicity of FVIII is not known. In order to investigate the role of glycosylation, a deglycosylated form of FVIII was generated by enzymatic cleavage of carbohydrate chains. The biochemical properties of fully glycosylated and completely deglycosylated forms of rFVIII (degly rFVIII) were compared using enzyme-linked immunosorbent assay, size exclusion chromatography, and clotting activity studies. The biological activity of degly FVIII decreased in comparison to the fully glycosylated protein. The ability of degly rFVIII to interact with phosphatidylserine containing membranes was partly impaired. Data suggested that glycosylation significantly influences the stability and the biologically relevant macromolecular interactions of FVIII. The effect of glycosylation on immunogenicity was investigated in a murine model of hemophilia A. Studies showed that deletion of glycosylation did not increase immunogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

aPTT:

Activated partial thromboplastin time

BPS:

Brain phosphatidylserine

BSA:

Bovine serum albumin

CHO:

Chinese hamster ovarian cell line

DEA:

Diethanolamine buffer

Degly FVIII:

Deglycosylated recombinant human factor VIII

DMPC:

Dimyristoylphosphatidylcholine

ELISA:

Enzyme-linked immunosorbent assay

Endo:

Endoglycosidase

FVIII:

Factor VIII

PB:

Phosphate buffer

PBA:

Phosphate buffer with 1% bovine serum albumin

PBT:

Tween 20 containing phosphate buffer

p-NPP:

p-nitrophenylphosphate

PS:

Phospatidylserine

rFVIII:

Recombinant human factor VIII

SEC:

Size exclusion chromatography

SDS-PAGE:

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis

References

  1. Kaufman RJ. Biological regulation of factor VIII activity. Annu Rev Med. 1992;43:325–39.

    PubMed  CAS  Google Scholar 

  2. Pittman DD, Tomkinson KN, Kaufman RJ. Post-translational requirements for functional factor V and factor VIII secretion in mammalian cells. J Biol Chem. 1994;269(25):17329–37.

    PubMed  CAS  Google Scholar 

  3. Kaufman RJ, Wasley LC, Dorner AJ. Synthesis, processing, and secretion of recombinant human factor VIII expressed in mammalian cells. J Biol Chem. 1988;263(13):6352–62.

    PubMed  CAS  Google Scholar 

  4. Bovenschen N, Rijken DC, Havekes LM, van Vlijmen BJ, Mertens K. The B domain of coagulation factor VIII interacts with the asialoglycoprotein receptor. J Thromb Haemost. 2005;3(6):1257–65.

    Article  PubMed  CAS  Google Scholar 

  5. Medzihradszky KF, Besman MJ, Burlingame AL. Structural characterization of site-specific N-glycosylation of recombinant human factor VIII by reversed-phase high-performance liquid chromatography-electrospray ionization mass spectrometry. Anal Chem. 1997;69(19):3986–94.

    Article  PubMed  CAS  Google Scholar 

  6. Medzihradszky KF, Besman MJ, Burlingame AL. Reverse-phase capillary high performance liquid chromatography/high performance electrospray ionization mass spectrometry: an essential tool for the characterization of complex glycoprotein digests. Rapid Commun Mass Spectrom. 1998;12(8):472–8.

    Article  PubMed  CAS  Google Scholar 

  7. Saenko EL, Scandella D, Yakhyaev AV, Greco NJ. Activation of factor VIII by thrombin increases its affinity for binding to synthetic phospholipid membranes and activated platelets. J Biol Chem. 1998;273(43):27918–26.

    Article  PubMed  CAS  Google Scholar 

  8. Lollar P. Molecular characterization of the immune response to factor VIII. Vox Sang. 2002;83(Suppl 1):403–8.

    PubMed  CAS  Google Scholar 

  9. Saenko EL, Ananyeva NM, Kouiavskaia DV, Khrenov AV, Anderson JA, Shima M, et al. Haemophilia A: effects of inhibitory antibodies on factor VIII functional interactions and approaches to prevent their action. Haemophilia. 2002;8(1):1–11.

    Article  PubMed  CAS  Google Scholar 

  10. Medzihradszky KF. Characterization of protein N-glycosylation. Methods Enzymol. 2005;405:116–38.

    Article  PubMed  CAS  Google Scholar 

  11. Narhi LO, Arakawa T, Aoki KH, Elmore R, Rohde MF, Boone T, et al. The effect of carbohydrate on the structure and stability of erythropoietin. J Biol Chem. 1991;266(34):23022–6.

    PubMed  CAS  Google Scholar 

  12. Helenius A. How N-linked oligosaccharides affect glycoprotein folding in the endoplasmic reticulum. Mol Biol Cell. 1994;5(3):253–65.

    PubMed  CAS  Google Scholar 

  13. Herrmann JM, Malkus P, Schekman R. Out of the ER—outfitters, escorts and guides. Trends Cell Biol. 1999;9(1):5–7.

    Article  PubMed  CAS  Google Scholar 

  14. Haraguchi M, Yamashiro S, Furukawa K, Takamiya K, Shiku H. The effects of the site-directed removal of N-glycosylation sites from beta-1,4-N-acetylgalactosaminyltransferase on its function. Biochem J. 1995;312(Pt 1):273–80.

    PubMed  CAS  Google Scholar 

  15. Lige B, Ma S, van Huystee RB. The effects of the site-directed removal of N-glycosylation from cationic peanut peroxidase on its function. Arch Biochem Biophys. 2001;386(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  16. van Hoek AN, Wiener MC, Verbavatz JM, Brown D, Lipniunas PH, Townsend RR, et al. Purification and structure-function analysis of native, PNGase F-treated, and endo-beta-galactosidase-treated CHIP28 water channels. Biochemistry. 1995;34(7):2212–9.

    Article  PubMed  Google Scholar 

  17. Mitra N, Sharon N, Surolia A. Role of N-linked glycan in the unfolding pathway of erythrina corallodendron lectin. Biochemistry. 2003;42(42):12208–16.

    Article  PubMed  CAS  Google Scholar 

  18. Joao HC, Dwek RA. Effects of glycosylation on protein structure and dynamics in ribonuclease B and some of its individual glycoforms. Eur J Biochem. 1993;218(1):239–44.

    Article  PubMed  CAS  Google Scholar 

  19. Diaz CL, Logman T, Stam HC, Kijne JW. Sugar-binding activity of pea lectin expressed in white clover hairy roots. Plant Physiol. 1995;109(4):1167–77.

    PubMed  CAS  Google Scholar 

  20. Mouricout M. Interactions between the enteric pathogen and the host. An assortment of bacterial lectins and a set of glycoconjugate receptors. Adv Exp Med Biol. 1997;412:109–23.

    PubMed  CAS  Google Scholar 

  21. Sharon N, Lis H. Lectins as cell recognition molecules. Science. 1989;246(4927):227–34.

    Article  PubMed  CAS  Google Scholar 

  22. Runkel L, Meier W, Pepinsky RB, Karpusas M, Whitty A, Kimball K, et al. Structural and functional differences between glycosylated and non-glycosylated forms of human interferon-beta (IFN-beta). Pharm Res. 1998;15(4):641–9.

    Article  PubMed  CAS  Google Scholar 

  23. Utsumi J, Yamazaki S, Hosoi K, Shimizu H, Kawaguchi K, Inagaki F. Conformations of fibroblast and E. coli-derived recombinant human interferon-beta s as studied by nuclear magnetic resonance and circular dichroism. J Biochem. 1986;99(5):1533–5.

    PubMed  CAS  Google Scholar 

  24. Elder B, Lakich D, Gitschier J. Sequence of the murine factor VIII cDNA. Genomics. 1993;16(2):374–9.

    Article  PubMed  CAS  Google Scholar 

  25. Reipert BM, Ahmad RU, Turecek PL, Schwarz HP. Characterization of antibodies induced by human factor VIII in a murine knockout model of hemophilia A. Thromb Haemost. 2000;84(5):826–32.

    PubMed  CAS  Google Scholar 

  26. Tarentino AL, Plummer TH Jr. Substrate specificity of Flavobacterium meningosepticum Endo F2 and endo F3: purity is the name of the game. Glycobiology. 1994;4(6):771–3.

    Article  PubMed  CAS  Google Scholar 

  27. Trimble RB, Tarentino AL. Identification of distinct endoglycosidase (endo) activities in flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans. J Biol Chem. 1991;266(3):1646–51.

    PubMed  CAS  Google Scholar 

  28. Over J. Methodology of the one-stage assay of Factor VIII (VIII:C). Scand J Haematol Suppl. 1984;41:13–24.

    PubMed  CAS  Google Scholar 

  29. Ramani K, Balasubramanian SV. Fluorescence properties of Laurdan in cochleate phases. Biochim Biophys Acta. 2003;1618(1):67–78.

    Article  PubMed  CAS  Google Scholar 

  30. Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234(3):466–8.

    PubMed  CAS  Google Scholar 

  31. Purohit VS, Ramani K, Kashi RS, Durrani MJ, Kreiger TJ, Balasubramanian SV. Topology of factor VIII bound to phosphatidylserine-containing model membranes. Biochim Biophys Acta. 2003;1617(1–2):31–8.

    PubMed  CAS  Google Scholar 

  32. Ramani K, Purohit V, Middaugh CR, Balasubramanian SV. Aggregation kinetics of recombinant human FVIII (rFVIII). J Pharm Sci. 2005;94(9):2023–9.

    Article  PubMed  CAS  Google Scholar 

  33. Verbruggen B, Novakova I, Wessels H, Boezeman J, van den Berg M, Mauser-Bunschoten E. The Nijmegen modification of the Bethesda assay for factor VIII:C inhibitors: improved specificity and reliability. Thromb Haemost. 1995;73(2):247–51.

    PubMed  CAS  Google Scholar 

  34. Griffin BD, Micklem LR, McCann MC, James K, Pepper DS. The production and characterisation of a panel of ten murine monoclonal antibodies to human procoagulant factor VIII. Thromb Haemost. 1986;55(1):40–6.

    PubMed  CAS  Google Scholar 

  35. Grillo AO, Edwards KL, Kashi RS, Shipley KM, Hu L, Besman MJ, et al. Conformational origin of the aggregation of recombinant human factor VIII. Biochemistry. 2001;40(2):586–95.

    Article  PubMed  CAS  Google Scholar 

  36. Qian J, Borovok M, Bi L, Kazazian HH Jr, Hoyer LW. Inhibitor antibody development and T cell response to human factor VIII in murine hemophilia A. Thromb Haemost. 1999;81(2):240–4.

    PubMed  CAS  Google Scholar 

  37. Shipley JM, Grubb JH, Sly WS. The role of glycosylation and phosphorylation in the expression of active human beta-glucuronidase. J Biol Chem. 1993;268(16):12193–8.

    PubMed  CAS  Google Scholar 

  38. Ioannou YA, Zeidner KM, Grace ME, Desnick RJ. Human alpha-galactosidase A: glycosylation site 3 is essential for enzyme solubility. Biochem J. 1998;332(Pt 3):789–97.

    PubMed  CAS  Google Scholar 

  39. Di Natale P, Vanacore B, Daniele A, Esposito S. Heparan N-sulfatase: in vitro mutagenesis of potential N-glycosylation sites. Biochem Biophys Res Commun. 2001;280(5):1251–7.

    Article  PubMed  Google Scholar 

  40. Purohit S, Shao K, Balasubramanian SV, Bahl OP. Mutants of human choriogonadotropin lacking N-glycosyl chains in the alpha-subunit. 1. Mechanism for the differential action of the N-linked carbohydrates. Biochemistry. 1997;36(40):12355–63.

    Article  PubMed  CAS  Google Scholar 

  41. Gilbert GE, Drinkwater D. Specific membrane binding of factor VIII is mediated by O-phospho-l-serine, a moiety of phosphatidylserine. Biochemistry. 1993;32(37):9577–85.

    Article  PubMed  CAS  Google Scholar 

  42. Ramani K, Purohit VS, Miclea RD, Middaugh CR, Balasubramanian SV. Lipid binding region (2303–2332) is involved in aggregation of recombinant human FVIII (rFVIII). J Pharm Sci. 2005;94(6):1288–99.

    Article  PubMed  CAS  Google Scholar 

  43. Weiss WFt, Young TM, Roberts CJ. Principles, approaches, and challenges for predicting protein aggregation rates and shelf life. J Pharm Sci. 2009;98(4):1246–77.

    Article  PubMed  CAS  Google Scholar 

  44. Andrews JM, Roberts CJ. Non-native aggregation of alpha-chymotrypsinogen occurs through nucleation and growth with competing nucleus sizes and negative activation energies. Biochemistry. 2007;46(25):7558–71.

    Article  PubMed  CAS  Google Scholar 

  45. Patten PA, Schellekens H. The immunogenicity of biopharmaceuticals. Lessons learned and consequences for protein drug development. Dev Biol (Basel). 2003;112:81–97.

    CAS  Google Scholar 

  46. Purohit VS, Middaugh CR, Balasubramanian SV. Influence of aggregation on immunogenicity of recombinant human factor VIII in hemophilia A mice. J Pharm Sci. 2006;95(2):358–71.

    Article  PubMed  CAS  Google Scholar 

  47. Shen BW, Spiegel PC, Chang CH, Huh JW, Lee JS, Kim J, et al. The tertiary structure and domain organization of coagulation factor VIII. Blood. 2008;111(3):1240–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Pharmaceutical Sciences Instrumentation Facility, University at Buffalo (UB), for the use of the Circular Dichroism and the Fluorescence spectrophotometers. We thank the Hemophilia Center of Western New York for providing rFVIII. We express gratitude to Dr. Robert Straubinger (UB) for suggestions and review of this manuscript. This work was supported by NHLBI, National Institute of Health grant R01 HL-70227 to SVB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sathy V. Balu-Iyer.

Additional information

Matthew P. Kosloski and Razvan D. Miclea equally contributed to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosloski, M.P., Miclea, R.D. & Balu-Iyer, S.V. Role of Glycosylation in Conformational Stability, Activity, Macromolecular Interaction and Immunogenicity of Recombinant Human Factor VIII. AAPS J 11, 424–431 (2009). https://doi.org/10.1208/s12248-009-9119-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-009-9119-y

Key words

Navigation