Skip to main content

Advertisement

Log in

Characterization of Cyclodextrin Inclusion Complexes of the Anti-HIV Non-Nucleoside Reverse Transcriptase Inhibitor UC781

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The highly potent anti-HIV agent UC781 is being evaluated for use in topical microbicides to prevent HIV transmission. However, UC781 is extremely hydrophobic with poor water solubility, a property that may complicate appropriate formulation of the drug. In this study, we examined the ability of several cyclodextrins, beta-cyclodextrin (βCD), methyl-beta-cyclodextrin (MβCD), and 2-hydroxylpropyl-beta-cyclodextrin (HPβCD), to enhance the aqueous solubility of UC781. Each of the cyclodextrins provided dramatic increases in UC781 aqueous solubility, the order being MβCD>HPβCD>βCD. The complexation constants (K 1:1) of the inclusion complexes were determined via a phase solubility technique using high-performance liquid chromatography and showed that UC781 solubility increased linearly as a function of cyclodextrin concentration. Ultraviolet spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and 2D 1H ROESY NMR spectroscopy were used to further characterize these UC781/cyclodextrin complexes. The inhibitory potency of UC781 and its HPβCD inclusion complex were evaluated using an in vitro HIV-1 reverse transcriptase inhibition assay The inhibitory potency of the UC781/HPβCD complex was 30-fold greater than that of UC781 alone, showing that the complexed drug is able to provide substantial inhibition of its target. The enhancement of UC781 aqueous solubility is essential for the development of a useful vaginal microbicide dosage form, and our data suggest that UC781/cyclodextrin inclusion complexes may be useful in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Balzarini, L. Naesens E. Verbeken, et al. Preclinical studies on thiocarboxanilide UC-781 as a virucidal agent. AIDS 12:1129–1138 (1998).

    Article  PubMed  CAS  Google Scholar 

  2. J. Balzarini, H. Pelemans S. Aquaro, et al. Highly favorable antiviral activity and resistance profile of the novel thiocarboxanilide pentenyloxy ether derivatives UC-781 and UC-82 as inhibitors of human immunodeficiency virus type 1 replication. Mol. Pharmacol. 50(2):394–401 (1996).

    PubMed  CAS  Google Scholar 

  3. J. Barnard, G. Borkow, and M. A. Parniak. The thiocarboxanilide nonnucleoside UC781 is a tight-binding inhibitor of HIV-1 reverse transcriptase. Biochemistry 36(25):7786–7792 (1997).

    Article  PubMed  CAS  Google Scholar 

  4. J. P. Bader, J. B. McMahon R. J. Schultz, et al. Oxathiin carboxanilide, a potent inhibitor of human immunodeficiency virus reproduction. Proc. Natl. Acad. Sci. USA 88(15):6740–6744 (1991), 1991 Aug1.

    Article  PubMed  CAS  Google Scholar 

  5. G. Borkow, D. Arion, M. A. Wainberg, and M. A. Parniak. The Thiocarboxanilide Nonnucleoside Inhibitor UC781 Restores Antiviral Activity of 39-Azido-39-Deoxythymidine (AZT) against AZT-Resistant Human Immunodeficiency Virus Type 1. Antimicrob. Agents Chemother. 43(2):259–263 (1999).

    PubMed  CAS  Google Scholar 

  6. W. Robert, J. Buckheit, M. J. Snow V. Fliakas-Boltz, et al. Highly Potent Oxathiin Carboxanilide Derivatives with Efficacy against Nonnucleoside Reverse Transcriptase Inhibitor-Resistant Human Immunodeficiency Virus Isolates. Antimicrob. Agents Chemother. 41(4):831–837 (1997).

    Google Scholar 

  7. G. Borkow, J. Barnard, T. M. Nguyen, A. A. Belmonte, M. A. Wainberg, and M. A. Parniak. Chemical barriers to human immunodeficiency virus type 1 (HIV-1) infection: retrovirucidal activity of UC781, a thiocarboxanilide nonnucleoside inhibitor of HIV-1 reverse transcriptase. J. Virol. 71(4):3023–3030 (1997).

    PubMed  CAS  Google Scholar 

  8. S. Liu, H. Lu, A. R. Neurath, and S. Jiang. Combination of candidate microbicides cellulose acetate 1,2-benzenedicarboxylate and UC781 has synergistic and complementary effects against human immunodeficiency virus type 1 infection. Antimicrob. Agents Chemother. 49(5):1830–1836 (2005).

    Article  PubMed  CAS  Google Scholar 

  9. S. Deferme, J. V. Gelder F. Ingels, et al. Intestinal absorption characteristics of the low solubility thiocarboxanilide UC-781. Int. J. Pharm. 234:113–119 (2002).

    Article  PubMed  CAS  Google Scholar 

  10. K. Larsen, L. Duedahl-Olesen, S. J. H. Christensen, F. Mathiesen, L. Pedersen, and W. Zimmermann. Purification and characterization of a cyclodextrin glycosyltransferase from Paenibacillus sp. F8. Carbohydr. Res. 310:211–219 (1998).

    Article  CAS  Google Scholar 

  11. A. Biwer, G. Antranikian, and E. Heinzle. Enzymatic production of cyclodextrins. Appl. Microbiol. Biotechnol. 59(6):609–617 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. J. Szejtli. Introduction and general overview of cyclodextrin chemistry. Chem. Rev. 98:1743–1753 (1998).

    Article  PubMed  CAS  Google Scholar 

  13. T. Loftsson, and M. E. Brewster. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 85(10):1017–1025 (1996).

    Article  PubMed  CAS  Google Scholar 

  14. V. J. Stella, and R. A. Rajewski. Cyclodextrins: their future in drug formulation and delivery. Pharm. Res. 14(5):556–567 (1997).

    Article  PubMed  CAS  Google Scholar 

  15. T. Higuchi, and K. Connors. Phase solubility diagram. Adv. Anal. Chem. Instrum. 4:117–212 (1965).

    CAS  Google Scholar 

  16. T. A. S. Brandao, A. Malheiros, J. D. Magro, V. C. Filho, and R. A. Yunes. Characterization of sesquiterpene polygodial-beta cyclodextrin inclusion complex. J. Incl. Phenom. Macrocycl. Chem. 46:77–81 (2003).

    Article  CAS  Google Scholar 

  17. K. Miyake, T. Irie, H. Arima, et al. Characterization of itraconazole/2-hydroxypropyl-Beta-cyclodextrin inclusion complex in aqueous propylene glycol solution. Int. J. Pharm. 179(2):237–245 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. H-J. Schneider, F. Hacket, and V. Rudiger. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 98:1755–1785 (1998).

    Article  PubMed  CAS  Google Scholar 

  19. N. Song, and Z. Wang. Synthesis, characterization, and multilayer assemblies of acid and base polyimides. Macromolecules 36:5885–5890 (2003).

    Article  CAS  Google Scholar 

  20. T. Loftsson, M. Masson, and M. Brewster. Self-association and cyclodextrin solubilization of drugs. J. Pharm. Sci. 91(11):2307–2316 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. K. Uekama, and M. Otagiri. Cyclodextrins in drug carrier systems. Crit. Rev. Ther. Drug Carr. Syst. 3(1):1–40 (1987).

    CAS  Google Scholar 

  22. Y. Sueishi, M. Kasahara, M. Inoue, and K. Matsueda. Effects of substituent and solvent on inclusion complexation of β-cyclodextrins with azobenzene derivatives. J. Incl. Phenom. Macrocycl. Chem. 46(1–2):71–75 (2003).

    Article  CAS  Google Scholar 

  23. M. Suzuki, H. Ohmori, M. Kajtar, J. Szejtli, and M. Vikmon. The association of inclusion complexes of cyclodextrins with azo dyes. J. Incl. Phenom. Macrocycl. Chem. 18(3):255–264 (1994).

    Article  CAS  Google Scholar 

  24. D. D. Chow, and A. H. Karara. Characterization, dissolution and bioavailability in rats of ibuprofen-beta-cyclodextrin complex system. Int. J. Pharm. 28:95–101 (1986).

    Article  CAS  Google Scholar 

  25. E. Iglesias. Inclusion complexation of novocaine by beta-cyclodextrin in aqueous solutions. J. Org. Chem. 71(12):4383–4392 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. J. Liu, L. Qiu, J. Gao, and Y. Jin. Preparation, characterization and in vivo evaluation of formulation of baicalein with hydroxypropyl-beta-cyclodextrin. Int. J. Pharm. 312(1–2):137–143 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. M. K. Ghorab, and M. C. Adeyeye. Enhancement of ibuprofen dissolution via wet granulation with beta-cyclodextrin. Pharm. Dev. Technol. 6(3):305–314 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. C. Rodríguez-Tenreiro, C. Alvarez-Lorenzo, A. Concheiro, and J. J. Torres-Labandeira. Characterization of cyclodextrin carbopol interactions by DSC and FTIR. J. Therm. Anal. Calorim. 77:403–411 (2004).

    Article  Google Scholar 

  29. G. H. Hsiue, C. M. Liao, and S. Y. Lin. Effect of drug–polymer interaction on the release characteristics of methacrylic acid copolymer microcapsules containing theophylline. Artif. Organs 22(8):651 (1998).

    Article  PubMed  CAS  Google Scholar 

  30. N. Sarisuta, P. Lawanprasert, S. Puttipipatkhachorn, and K. Srikummoon. The influence of drug–excipient and drug–polymer interactions on butt adhesive strength of ranitidine hydrochloride film-coated tablets. Drug Dev. Ind. Pharm. 32(4):463–471 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. T. Matsui, H. Iwasaki, K. Matsumoto, and Y. Osajima. NMR studies of cyclodextrin inclusion complex with ethyl hexanoate in ethanol solution. Biosci. Biotech. Biochem. 58:1102–1106 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Drs. Billy Day, Stephen Weber, and Bernard Moncla for providing access to critical instrumentation for use in these studies. We also acknowledge CONRAD for providing UC781 for these studies. This work was supported in part by NIH grant AI051661.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa C. Rohan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Parniak, M.A., Isaacs, C.E. et al. Characterization of Cyclodextrin Inclusion Complexes of the Anti-HIV Non-Nucleoside Reverse Transcriptase Inhibitor UC781. AAPS J 10, 606–613 (2008). https://doi.org/10.1208/s12248-008-9070-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9070-3

Key words

Navigation