Skip to main content

Advertisement

Log in

Opioid Tolerance Development: A Pharmacokinetic/Pharmacodynamic Perspective

  • Therapeutic Tolerance: Pharmacokinetic-Pharmacodynamic Mechanisms
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

The opioids are commonly used to treat acute and severe pain. Long-term opioid administration eventually reaches a dose ceiling that is attributable to the rapid onset of analgesic tolerance coupled with the slow development of tolerance to the untoward side effects of respiratory depression, nausea and decreased gastrointestinal motility. The need for effective-long term analgesia remains. In order to develop new therapeutics and novel strategies for use of current analgesics, the processes that mediate tolerance must be understood. This review highlights potential pharmacokinetic (changes in metabolite production, metabolizing enzyme expression, and transporter function) and pharmacodynamic (receptor type, location and functionality; alterations in signaling pathways and cross-tolerance) aspects of opioid tolerance development, and presents several pharmacodynamic modeling strategies that have been used to characterize time-dependent attenuation of opioid analgesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AC:

adenylyl cyclase

BBB:

blood brain barrier

CREB:

cAMP-responsive element binding protein

CYP:

cytochrome P450

DOR:

δ-opioid receptor

GABA:

γ-amino-butyric acid

Glu:

glutamate

GPCR:

G-protein coupled receptor

GRK:

G-protein receptor kinase

hPXR:

human pregnane X receptor

KOR:

κ-opioid receptor

K p,brain :

brain-to-serum ratio

l-Arg:

l-arginine

l-Cit:

l-citrulline

M3G:

morphine-3-glucuronide

M6G:

morphine-6-glucuronide

NMDA:

N-methyl-d-aspartate

nNOS:

neuronal nitric oxide synthase

NR:

NMDA receptor

OR:

opioid receptors

PD:

pharmacodynamic

P-gp:

P-glycoprotein

PK:

pharmacokinetic

PKA:

protein kinase A

PSD-95:

post-synaptic density complex

sGC:

soluble guanylyl cyclase

SNP:

single nucleotide polymorphism

UGT:

uridine-5′-diphosphate-glucuronosyltranserase

References

  1. C. E. Inturrisi. Clinical pharmacology of opioids for pain. Clin. J. Pain. 18(4 Suppl):S3–S13 (2002).

    PubMed  Google Scholar 

  2. World Health Organization. Cancer Pain Relief, Second Edition, World Health Organization: Geneva, Switzerland, 1996, pp. 1–69.

  3. R. T. Jones. Euphoria vs. cocaine plasma concentrations after nasal administration (20% solution). In C. N. Chiang, R. L. Hawks (eds.), NIDA Research Monograph 99 (Research Findings on Smoking of Abused Substances), 1990, pp. 30–41.

  4. S. Siegel. Morphine analgesic tolerance: its situation specificity supports a Pavlovian conditioning model. Science. 193(4250):323–325 (1976).

    PubMed  CAS  Google Scholar 

  5. J. M. van Ree, M. A. Gerrits, and L. J. Vanderschuren. Opioids, reward and addiction: An encounter of biology, psychology, and medicine. Pharmacol. Rev. 51(2):341–396 (1999).

    PubMed  Google Scholar 

  6. E. M. Ross, and T. P. Kenakin. Pharmacodynamics: mechanisms of drug action and the relationship between drug concentration and effect. In J. G. Hardman, and L. E. Limbird (eds.), Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 10th edn., McGraw Hill, 2001, pp. 31–43.

  7. M. Gibaldi, and G. Levy. Dose-dependent decline of pharmacologic effects of drugs with linear pharmacokinetic characteristics. J. Pharm. Sci. 61(4):567–569 (1972).

    PubMed  CAS  Google Scholar 

  8. S. Bernard, K. A. Neville, A. T. Nguyen, and D. A. Flockhart. Interethnic differences in genetic polymorphisms of CYP2D6 in the U.S. population: clinical implications. Oncologist. 11(2):126–135 (2006).

    PubMed  CAS  Google Scholar 

  9. J. Desmeules, M. P. Gascon, P. Dayer, and M. Magistris. Impact of environmental and genetic factors on codeine analgesia. Eur. J. Clin. Pharmacol. 41(1):23–26 (1991).

    PubMed  CAS  Google Scholar 

  10. B. A. Berkowitz. The relationship of pharmacokinetics to pharmacological activity: morphine, methadone and naloxone. Clin. Pharmacokinet. 1(3):219–230 (1976).

    PubMed  CAS  Google Scholar 

  11. J. Sawe. High-dose morphine and methadone in cancer patients. Clinical pharmacokinetic considerations of oral treatment. Clin. Pharmacokinet. 11(2):87–106 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. O. M. Fredheim, P. C. Borchgrevink, P. Klepstad, S. Kaasa, and O. Dale. Long term methadone for chronic pain: a pilot study of pharmacokinetic aspects. Eur. J. Pain. 11(6):599–604 (2007).

    PubMed  CAS  Google Scholar 

  13. J. Sawe, J. O. Svensson, and A. Rane. Morphine metabolism in cancer patients on increasing oral doses—no evidence for autoinduction or dose-dependence. Br. J. Clin. Pharmacol. 16(1):85–93 (1983).

    PubMed  CAS  Google Scholar 

  14. C. Dagenais, C. L. Graff, and G. M. Pollack. Variable modulation of opioid brain uptake by P-glycoprotein in mice. Biochem. Pharmacol. 67(2):269–276 (2004).

    PubMed  CAS  Google Scholar 

  15. C. J. Matheny, M. W. Lamb, K. R. Brouwer;, and G. M. Pollack. Pharmacokinetic and pharmacodynamic implications of P-glycoprotein modulation. Pharmacotherapy. 21(7):778–796 (2001).

    PubMed  CAS  Google Scholar 

  16. M. King, W. Su, A. Chang, A. Zuckerman, and G. W. Pasternak. Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat. Neurosci. 4(3):268–274 (2001).

    PubMed  CAS  Google Scholar 

  17. J. C. Kalvass, E. O. Olson, and G. M. Pollack. Influence of blood–brain barrier P-glycoprotein on brain penetration and antinociceptive effects of model opioids. AAPS J. 7(S2) (2005).

  18. B. Bauer, X. Yang, A. M. Hartz, E. R. Olson, R. Zhao, J. C. Kalvass, G. M. Pollack, and D. S. Miller. In vivo activation of human pregnane X receptor tightens the blood-brain barrier to methadone through P-glycoprotein up-regulation. Mol. Pharmacol. 70(4):1212–1219 (2006).

    PubMed  CAS  Google Scholar 

  19. H. E. Hassan, A. L. Myers, I. J. Lee, A. Coop, and N. D. Eddington. Oxycodone induces overexpression of P-glycoprotein (ABCB1) and affects paclitaxel's tissue distribution in Sprague Dawley rats. J. Pharm. Sci. 96(9):2494–506 (2007).

    PubMed  CAS  Google Scholar 

  20. C. L. Aquilante, S. P. Letrent, G. M. Pollack, and K. L. Brouwer. Increased brain P-glycoprotein in morphine tolerant rats. Life. Sci. 66(4):PL47–PL51 (2000).

    PubMed  CAS  Google Scholar 

  21. E. Wittwer, and S. E. Kern. Role of morphine’s metabolites in analgesia: concepts and controversies. AAPS. J. 8(2):E348–E352 (2006).

    PubMed  Google Scholar 

  22. G. D. Smith, and M. T. Smith. Morphine-3-glucuronide: evidence to support its putative role in the development of tolerance to the antinociceptive effects of morphine in the rat. Pain. 62(1):51–60 (1995).

    PubMed  CAS  Google Scholar 

  23. M. Gardmark, M. O. Karlsson, F. Jonsson, and M. Hammarlund-Udenaes. Morphine-3-glucuronide has a minor effect on morphine antinociception. Pharmacodynamic modeling. J. Pharm. Sci. 87(7):813–820 (1998).

    PubMed  CAS  Google Scholar 

  24. D. M. Ouellet, and G. M. Pollack. Effect of prior morphine-3-glucuronide exposure on morphine disposition and antinociception. Biochem. Pharmacol. 53(10):1451–1457 (1997).

    PubMed  CAS  Google Scholar 

  25. M. T. Smith. Neuroexcitatory effects of morphine and hydromorphone: evidence implicating the 3-glucuronide metabolites. Clin. Exp. Pharmacol. Physiol. 27(7):524–528 (2000).

    PubMed  CAS  Google Scholar 

  26. S. E. Bartlett, T. Cramond, and M. T. Smith. The excitatory effects of morphine-3-glucuronide are attenuated by LY274614, a competitive NMDA receptor antagonist, and by midazolam, an agonist at the benzodiazepine site on the GABAA receptor complex. Life. Sci. 54(10):687–694 (1994).

    PubMed  CAS  Google Scholar 

  27. C. J. Evans, D. E. Keith Jr., H. Morrison, K. Magendzo, and R. H. Edwards. Cloning of a delta opioid receptor by functional expression. Science. 258(5090):1952–1955 (1992).

    PubMed  CAS  Google Scholar 

  28. Y. Chen, A. Mestek, J. Liu, J. A. Hurley, and L. Yu. Molecular cloning and functional expression of a mu-opioid receptor from rat brain. Mol. Pharmacol. 44(1):8–12 (1993).

    PubMed  CAS  Google Scholar 

  29. S. Li, J. Zhu, C. Chen, Y. W. Chen, J. K. Deriel, B. Ashby, and L. Y. Liu-Chen. Molecular cloning and expression of a rat kappa opioid receptor. Biochem. J. 295(Pt 3):629–633 (1993).

    PubMed  CAS  Google Scholar 

  30. B. L. Kieffer. Opioids: first lessons from knockout mice. Trends. Pharmacol. Sci. 20(1):19–26 (1999).

    PubMed  CAS  Google Scholar 

  31. H. W. Matthes, R. Maldonado, F. Simonin, O. Valverde, S. Slowe, I. Kitchen, K. Befort, A. Dierich, M. Le Meur, P. Dolle, E. Tzavara, J. Hanoune, B. P. Roques, and B. L. Kieffer. Loss of morphine-induced analgesia, reward effect and withdrawal symptoms in mice lacking the mu-opioid-receptor gene. Nature. 383(6603):819–823 (1996).

    PubMed  CAS  Google Scholar 

  32. I. Sora, N. Takahashi, M. Funada, H. Ujike, R. S. Revay, D. M. Donovan, L. L. Miner, and G. R. Uhl. Opiate receptor knockout mice define mu receptor roles in endogenous nociceptive responses and morphine-induced analgesia. Proc. Natl. Acad. Sci. U. S. A. 94(4):1544–1549 (1997).

    PubMed  CAS  Google Scholar 

  33. J. T. Williams, M. J. Christie, and O. Manzoni. Cellular and synaptic adaptations mediating opioid dependence. Physiol. Rev. 81(1):299–343 (2001).

    PubMed  CAS  Google Scholar 

  34. P. H. Tso, and Y. H. Wong. Molecular basis of opioid dependence: role of signal regulation by G-proteins. Clin. Exp. Pharmacol. Physiol. 30(5–6):307–316 (2003).

    PubMed  CAS  Google Scholar 

  35. D. Smart, R. A. Hirst, K. Hirota, D. K. Grandy, and D. G. Lambert. The effects of recombinant rat mu-opioid receptor activation in CHO cells on phospholipase C, [Ca2+]i and adenylyl cyclase. Br. J. Pharmacol. 120(6):1165–1171 (1997).

    PubMed  CAS  Google Scholar 

  36. E. J. Nestler, and G. K. Aghajanian. Molecular and cellular basis of addiction. Science. 278(5335):58–63 (1997).

    PubMed  CAS  Google Scholar 

  37. D. A. Taylor, and W. W. Fleming. Unifying perspectives of the mechanisms underlying the development of tolerance and physical dependence to opioids. J. Pharmacol. Exp. Ther. 297(1):11–18 (2001).

    PubMed  CAS  Google Scholar 

  38. L. Zhang, Y. Yu, S. Mackin, F. F. Weight, G. R. Uhl, and J. B. Wang. Differential mu opiate receptor phosphorylation and desensitization induced by agonists and phorbol esters. J. Biol. Chem. 271(19):11449–11454 (1996).

    PubMed  CAS  Google Scholar 

  39. Y. Yu, L. Zhang, X. Yin, H. Sun, G. R. Uhl, and J. B. Wang. Mu opioid receptor phosphorylation, desensitization, and ligand efficacy. J. Biol. Chem. 272(46):28869–28874 (1997).

    PubMed  CAS  Google Scholar 

  40. J. Zhang, S. S. Ferguson, L. S. Barak, S. R. Bodduluri, S. A. Laporte, P. Y. Law, and M. G. Caron. Role for G protein-coupled receptor kinase in agonist-specific regulation of mu-opioid receptor responsiveness. Proc. Natl. Acad. Sci. U. S. A. 95(12):7157–7162 (1998).

    PubMed  CAS  Google Scholar 

  41. L. M. Bohn, R. R. Gainetdinov, F. T. Lin, R. J. Lefkowitz, and M. G. Caron. Mu-opioid receptor desensitization by beta-arrestin-2 determines morphine tolerance but not dependence. Nature. 408(6813):720–723 (2000).

    PubMed  CAS  Google Scholar 

  42. L. M. Bohn, R. J. Lefkowitz, R. R. Gainetdinov, K. Peppel, M. G. Caron, and F. T. Lin. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science. 286(5449):2495–2498 (1999).

    PubMed  CAS  Google Scholar 

  43. D. Thompson, M. Pusch, and J. L. Whistler. Changes in G protein-coupled receptor sorting protein affinity regulate postendocytic targeting of G protein-coupled receptors. J. Biol. Chem. 282(40):29178–29185 (2007).

    PubMed  CAS  Google Scholar 

  44. M. Narita, M. Suzuki, M. Narita, K. Niikura, A. Nakamura, M. Miyatake, Y. Yajima, and T. Suzuki. mu-Opioid receptor internalization-dependent and -independent mechanisms of the development of tolerance to mu-opioid receptor agonists: comparison between etorphine and morphine. Neuroscience. 138(2):609–619 (2006).

    PubMed  CAS  Google Scholar 

  45. V. C. Dang, and J. T. Williams. Morphine-induced mu-opioid receptor desensitization. Mol. Pharmacol. 68(4):1127–1132 (2005).

    PubMed  CAS  Google Scholar 

  46. L. He, J. Fong, M. von Zastrow, and J. L. Whistler. Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell. 108(2):271–282 (2002).

    PubMed  CAS  Google Scholar 

  47. B. A. Jordan, and L. A. Devi. G-protein-coupled receptor heterodimerization modulates receptor function. Nature. 399(6737):697–700 (1999).

    PubMed  CAS  Google Scholar 

  48. C. P. Bailey, D. Couch, E. Johnson, K. Griffiths, E. Kelly, and G. Henderson. Mu-opioid receptor desensitization in mature rat neurons: lack of interaction between DAMGO and morphine. J. Neurosci. 23(33):10515–10520 (2003).

    PubMed  CAS  Google Scholar 

  49. K. Stafford, A. B. Gomes, J. Shen, and B. C. Yoburn. mu-Opioid receptor downregulation contributes to opioid tolerance in vivo. Pharmacol. Biochem. Behav. 69(1–2):233–237 (2001).

    PubMed  CAS  Google Scholar 

  50. A. K. Finn, and J. L. Whistler. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron. 32(5):829–839 (2001).

    PubMed  CAS  Google Scholar 

  51. L. J. Sim-Selley, K. L. Scoggins, M. P. Cassidy, L. A. Smith, W. L. Dewey, F. L. Smith, and D. E. Selley. Region-dependent attenuation of mu opioid receptor-mediated G-protein activation in mouse CNS as a function of morphine tolerance. Br. J. Pharmacol. 151(8):1324–1333 (2007).

    PubMed  CAS  Google Scholar 

  52. K. S. LaForge, V. Yuferov, and M. J. Kreek. Opioid receptor and peptide gene polymorphisms: potential implications for addictions. Eur. J. Pharmacol. 410(2–3):249–268 (2000).

    PubMed  CAS  Google Scholar 

  53. M. J. Kreek, G. Bart, C. Lilly, K. S. LaForge, and D. A. Nielsen. Pharmacogenetics and human molecular genetics of opiate and cocaine addictions and their treatments. Pharmacol. Rev. 57(1):1–26 (2005).

    PubMed  CAS  Google Scholar 

  54. C. Bond, K. S. LaForge, M. Tian, D. Melia, S. Zhang, L. Borg, J. Gong, J. Schluger, J. A. Strong, S. M. Leal, J. A. Tischfield, M. J. Kreek, and L. Yu. Single-nucleotide polymorphism in the human mu opioid receptor gene alters beta-endorphin binding and activity: possible implications for opiate addiction. Proc. Natl. Acad. Sci. U. S. A. 95(16):9608–9613 (1998).

    PubMed  CAS  Google Scholar 

  55. C. K. Surratt, P. S. Johnson, A. Moriwaki, B. K. Seidleck, C. J. Blaschak, J. B. Wang, and G. R. Uhl. −mu opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J. Biol. Chem. 269(32):20548–20553 (1994).

    PubMed  CAS  Google Scholar 

  56. R. R. Romberg, E. Olofsen, H. Bijl, P. E. Taschner, L. J. Teppema, E. Y. Sarton, J. W. van Kleef, and A. Dahan. Polymorphism of mu-opioid receptor gene (OPRM1:c.118A>G) does not protect against opioid-induced respiratory depression despite reduced analgesic response. Anesthesiology. 102(3):522–530 (2005).

    PubMed  CAS  Google Scholar 

  57. B. G. Oertel, R. Schmidt, A. Schneider, G. Geisslinger, and J. Lotsch. The mu-opioid receptor gene polymorphism 118A>G depletes alfentanil-induced analgesia and protects against respiratory depression in homozygous carriers. Pharmacogenet. Genomics. 16(9):625–36 (2006).

    PubMed  CAS  Google Scholar 

  58. K. Befort, D. Filliol, F. M. Decaillot, C. Gaveriaux-Ruff, M. R. Hoehe, and B. L. Kieffer. A single nucleotide polymorphic mutation in the human mu-opioid receptor severely impairs receptor signaling. J. Biol. Chem. 276(5):3130–3137 (2001).

    PubMed  CAS  Google Scholar 

  59. A. Beyer, T. Koch, H. Schroder, S. Schulz, and V. Hollt. Effect of the A118G polymorphism on binding affinity, potency and agonist-mediated endocytosis, desensitization, and resensitization of the human mu-opioid receptor. J. Neurochem. 89(3):553–560 (2004).

    PubMed  CAS  Google Scholar 

  60. D. Wang, J. M. Quillan, K. Winans, J. L. Lucas, and W. Sadee. Single nucleotide polymorphisms in the human mu opioid receptor gene alter basal G protein coupling and calmodulin binding. J. Biol. Chem. 276(37):34624–34630 (2001).

    PubMed  CAS  Google Scholar 

  61. M. J. Millan. Kappa-opioid receptor-mediated antinociception in the rat. I. Comparative actions of mu- and kappa-opioids against noxious thermal, pressure and electrical stimuli. J. Pharmacol. Exp. Ther. 251(1):334–341 (1989).

    PubMed  CAS  Google Scholar 

  62. M. J. Millan, A. Czlonkowski, A. Lipkowski, and A. Herz. Kappa-opioid receptor-mediated antinociception in the rat. II. Supraspinal in addition to spinal sites of action. J. Pharmacol. Exp. Ther. 251(1):342–350 (1989).

    PubMed  CAS  Google Scholar 

  63. J. S. Heyman, S. A. Mulvaney, H. I. Mosberg, and F. Porreca. Opioid delta-receptor involvement in supraspinal and spinal antinociception in mice. Brain. Res. 420(1):100–108 (1987).

    PubMed  CAS  Google Scholar 

  64. G. Wittert, P. Hope, and D. Pyle. Tissue distribution of opioid receptor gene expression in the rat. Biochem. Biophys. Res. Commun. 218(3):877–881 (1996).

    PubMed  CAS  Google Scholar 

  65. G. E. Leighton, R. E. Rodriguez, R. G. Hill, and J. Hughes. Kappa-opioid agonists produce antinociception after i.v. and i.c.v. but not intrathecal administration in the rat. Br. J. Pharmacol. 93(3):553–560 (1988).

    PubMed  CAS  Google Scholar 

  66. M. Narita, J. Khotib, M. Suzuki, S. Ozaki, Y. Yajima, and T. Suzuki. Heterologous mu-opioid receptor adaptation by repeated stimulation of kappa-opioid receptor: up-regulation of G-protein activation and antinociception. J. Neurochem. 85(5):1171–1179 (2003).

    PubMed  CAS  Google Scholar 

  67. J. P. McLaughlin, L. C. Myers, P. E. Zarek, M. G. Caron, R. J. Lefkowitz, T. A. Czyzyk, J. E. Pintar, and C. Chavkin. Prolonged kappa opioid receptor phosphorylation mediated by G-protein receptor kinase underlies sustained analgesic tolerance. J. Biol. Chem. 279(3):1810–1818 (2004).

    PubMed  CAS  Google Scholar 

  68. T. Okura, E. V. Varga, Y. Hosohata, E. Navratilova, S. M. Cowell, K. Rice, H. Nagase, V. J. Hruby, W. R. Roeske, and H. I. Yamamura. Agonist-specific down-regulation of the human delta-opioid receptor. Eur. J. Pharmacol. 459(1):9–16 (2003).

    PubMed  CAS  Google Scholar 

  69. I. Lecoq, N. Marie, P. Jauzac, and S. Allouche. Different regulation of human delta-opioid receptors by SNC-80 [(+)-4-[(alphaR)-alpha-((2S,5R)-4-allyl-2,5-dimethyl-1-piperazinyl)-3-meth oxybenzyl]-N,N-diethylbenzamide] and endogenous enkephalins. J. Pharmacol. Exp. Ther. 310(2):666–677 (2004).

    PubMed  CAS  Google Scholar 

  70. N. D. de Stoutz, E. Bruera, and M. Suarez-Almazor. Opioid rotation for toxicity reduction in terminal cancer patients. J. Pain. Symptom. Manage. 10(5):378–384 (1995).

    PubMed  Google Scholar 

  71. J. Riley, J. R. Ross, D. Rutter, A. U. Wells, K. Goller, R. du Bois, and K. Welsh. No pain relief from morphine? Individual variation in sensitivity to morphine and the need to switch to an alternative opioid in cancer patients. Support. Care. Cancer. 14(1):56–64 (2006).

    PubMed  Google Scholar 

  72. P. Athanasos, C. S. Smith, J. M. White, A. A. Somogyi, F. Bochner, and W. Ling. Methadone maintenance patients are cross-tolerant to the antinociceptive effects of very high plasma morphine concentrations. Pain. 120(3):267–275 (2006).

    PubMed  CAS  Google Scholar 

  73. A. Duttaroy, and B. C. Yoburn. The effect of intrinsic efficacy on opioid tolerance. Anesthesiology. 82(5):1226–1236 (1995).

    PubMed  CAS  Google Scholar 

  74. E. A. Walker, T. M. Richardson, and A. M. Young. Tolerance and cross-tolerance to morphine-like stimulus effects of mu opioids in rats. Psychopharmacology. (Berl). 133(1):17–28 (1997).

    CAS  Google Scholar 

  75. G. W. Pasternak. Multiple opiate receptors: deja vu all over again. Neuropharmacology. 47(Suppl 1):312–323 (2004).

    PubMed  CAS  Google Scholar 

  76. A. Gupta, F. M. Decaillot, and L. A. Devi. Targeting opioid receptor heterodimers: strategies for screening and drug development. AAPS. J. 8(1):E153–E159 (2006).

    PubMed  CAS  Google Scholar 

  77. M. R. Zarrindast, K. Alaei-Nia, and M. Shafizadeh. On the mechanism of tolerance to morphine-induced Straub tail reaction in mice. Pharmacol. Biochem. Behav. 69(3–4):419–424 (2001).

    PubMed  CAS  Google Scholar 

  78. P. Luccarini, L. Perrier, C. Degoulange, A. M. Gaydier, and R. Dallel. Synergistic antinociceptive effect of amitriptyline and morphine in the rat orofacial formalin test. Anesthesiology. 100(3):690–696 (2004).

    PubMed  CAS  Google Scholar 

  79. J. Sawynok, M. J. Esser, and A. R. Reid. Antidepressants as analgesics: an overview of central and peripheral mechanisms of action. J. Psychiatry. Neurosci. 26(1):21–29 (2001).

    PubMed  CAS  Google Scholar 

  80. K. N. Gracy, A. L. Svingos, and V. M. Pickel. Dual ultrastructural localization of mu-opioid receptors and NMDA-type glutamate receptors in the shell of the rat nucleus accumbens. J. Neurosci. 17(12):4839–4848 (1997).

    PubMed  CAS  Google Scholar 

  81. K. G. Commons, E. J. van Bockstaele, and D. W. Pfaff. Frequent colocalization of mu opioid and NMDA-type glutamate receptors at postsynaptic sites in periaqueductal gray neurons. J. Comp. Neurol. 408(4):549–559 (1999).

    PubMed  CAS  Google Scholar 

  82. M. Zhao, and D. T. Joo. Subpopulation of dorsal horn neurons displays enhanced N-methyl-D-aspartate receptor function after chronic morphine exposure. Anesthesiology. 104(4):815–825 (2006).

    PubMed  CAS  Google Scholar 

  83. S. H. Snyder. Opiate receptors and beyond: 30 years of neural signaling research. Neuropharmacology. 47(Suppl 1):274–285 (2004).

    PubMed  CAS  Google Scholar 

  84. Y. A. Kolesnikov, C. G. Pick, G. Ciszewska, and G. W. Pasternak. Blockade of tolerance to morphine but not to kappa opioids by a nitric oxide synthase inhibitor. Proc. Natl. Acad. Sci. U. S. A. 90(11):5162–5166 (1993).

    PubMed  CAS  Google Scholar 

  85. A. M. Babey, Y. Kolesnikov, J. Cheng, C. E. Inturrisi, R. R. Trifilletti, and G. W. Pasternak. Nitric oxide and opioid tolerance. Neuropharmacology. 33(11):1463–1470 (1994).

    PubMed  CAS  Google Scholar 

  86. J. A. Kemp, and R. M. McKernan. NMDA receptor pathways as drug targets. Nat. Neurosci. 5(Suppl):1039–1042 (2002).

    PubMed  CAS  Google Scholar 

  87. B. H. Herman, F. Vocci, and P. Bridge. The effects of NMDA receptor antagonists and nitric oxide synthase inhibitors on opioid tolerance and withdrawal. Medication development issues for opiate addiction. Neuropsychopharmacology. 13(4):269–293 (1995).

    PubMed  CAS  Google Scholar 

  88. G. R. Lauretti, I. C. Lima, M. P. Reis, W. A. Prado, and N. L. Pereira. Oral ketamine and transdermal nitroglycerin as analgesic adjuvants to oral morphine therapy for cancer pain management. Anesthesiology. 90(6):1528–1533 (1999).

    PubMed  CAS  Google Scholar 

  89. R. M. Allen, and L. A. Dykstra. Attenuation of mu-opioid tolerance and cross-tolerance by the competitive N-methyl-D-aspartate receptor antagonist LY235959 is related to tolerance and cross-tolerance magnitude. J. Pharmacol. Exp. Ther. 295(3):1012–1021 (2000).

    PubMed  CAS  Google Scholar 

  90. B. D. Fischer, K. A. Carrigan, and L. A. Dykstra. Effects of N-methyl-D-aspartate receptor antagonists on acute morphine-induced and l-methadone-induced antinociception in mice. J. Pain. 6(7):425–433 (2005).

    PubMed  CAS  Google Scholar 

  91. I. O. Medvedev, A. A. Malyshkin, I. V. Belozertseva, I. A. Sukhotina, N. Y. Sevostianova, K. Aliev, E. E. Zvartau, C. G. Parsons, W. Danysz, and A. Y. Bespalov. Effects of low-affinity NMDA receptor channel blockers in two rat models of chronic pain. Neuropharmacology. 47(2):175–183 (2004).

    PubMed  CAS  Google Scholar 

  92. M. Suzuki, T. Kinoshita, T. Kikutani, K. Yokoyama, T. Inagi, K. Sugimoto, S. Haraguchi, T. Hisayoshi, and Y. Shimada. Determining the plasma concentration of ketamine that enhances epidural bupivacaine-and-morphine-induced analgesia. Anesth. Analg. 101(3):777–784 (2005).

    PubMed  CAS  Google Scholar 

  93. N. F. Sethna, M. Liu, R. Gracely, G. J. Bennett, and M. B. Max. Analgesic and cognitive effects of intravenous ketamine-alfentanil combinations versus either drug alone after intradermal capsaicin in normal subjects. Anesth. Analg. 86(6):1250–1256 (1998).

    PubMed  CAS  Google Scholar 

  94. K. E. Redwine, and K. A. Trujillo. Effects of NMDA receptor antagonists on acute mu-opioid analgesia in the rat. Pharmacol. Biochem. Behav. 76(2):361–372 (2003).

    PubMed  CAS  Google Scholar 

  95. J. Willetts, R. L. Balster, and J. D. Leander. The behavioral pharmacology of NMDA receptor antagonists. Trends Pharmacol. Sci. 11(10):423–428 (1990).

    PubMed  CAS  Google Scholar 

  96. H. S. Chen, and S. A. Lipton. The chemical biology of clinically tolerated NMDA receptor antagonists. J. Neurochem. 97(6):1611–1626 (2006).

    PubMed  CAS  Google Scholar 

  97. K. M. Cosman, L. L. Boyle, and A. P. Porsteinsson. Memantine in the treatment of mild-to-moderate Alzheimer's disease. Expert. Opin. Pharmacother. 8(2):203–214 (2007).

    PubMed  CAS  Google Scholar 

  98. R. E. Coggeshall, S. Zhou, and S. M. Carlton. Opioid receptors on peripheral sensory axons. Brain. Res. 764(1–2):126–132 (1997).

    PubMed  CAS  Google Scholar 

  99. S. M. Carlton, S. Zhou, and R. E. Coggeshall. Evidence for the interaction of glutamate and NK1 receptors in the periphery. Brain. Res. 790(1–2):160–169 (1998).

    PubMed  CAS  Google Scholar 

  100. S. M. Carlton, G. L. Hargett, and R. E. Coggeshall. Localization and activation of glutamate receptors in unmyelinated axons of rat glabrous skin. Neurosci. Lett. 197(1):25–28 (1995).

    PubMed  CAS  Google Scholar 

  101. S. M. Carlton, and R. E. Coggeshall. Inflammation-induced changes in peripheral glutamate receptor populations. Brain. Res. 820(1–2):63–70 (1999).

    PubMed  CAS  Google Scholar 

  102. O. Pol, and M. M. Puig. Expression of opioid receptors during peripheral inflammation. Curr. Top. Med. Chem. 4(1):51–61 (2004).

    PubMed  CAS  Google Scholar 

  103. Y. A. Kolesnikov, S. Jain, R. Wilson, and G. W. Pasternak. Peripheral morphine analgesia: synergy with central sites and a target of morphine tolerance. J. Pharmacol. Exp. Ther. 279(2):502–506 (1996).

    PubMed  CAS  Google Scholar 

  104. J. A. Reichert, R. S. Daughters, R. Rivard, and D. A. Simone. Peripheral and preemptive opioid antinociception in a mouse visceral pain model. Pain. 89(2–3):221–227 (2001).

    PubMed  CAS  Google Scholar 

  105. H. E. Shannon, and E. A. Lutz. Comparison of the peripheral and central effects of the opioid agonists loperamide and morphine in the formalin test in rats. Neuropharmacology. 42(2):253–261 (2002).

    PubMed  CAS  Google Scholar 

  106. Y. Kolesnikov, M. Cristea, G. Oksman, A. Torosjan, and R. Wilson. Evaluation of the tail formalin test in mice as a new model to assess local analgesic effects. Brain. Res. 1029(2):217–223 (2004).

    PubMed  CAS  Google Scholar 

  107. M. Gardmark, L. Brynne, M. Hammarlund-Udenaes, and M. O. Karlsson. Interchangeability and predictive performance of empirical tolerance models. Clin. Pharmacokinet. 36(2):145–167 (1999).

    PubMed  CAS  Google Scholar 

  108. H. C. Porchet, N. L. Benowitz, and L. B. Sheiner. Pharmacodynamic model of tolerance: application to nicotine. J. Pharmacol. Exp. Ther. 244(1):231–236 (1988).

    PubMed  CAS  Google Scholar 

  109. D. M. Ouellet, and G. M. Pollack. Pharmacodynamics and tolerance development during multiple intravenous bolus morphine administration in rats. J. Pharmacol. Exp. Ther. 281(2):713–720 (1997).

    PubMed  CAS  Google Scholar 

  110. K. Lutfy, D. E. Hurlbut, and E. Weber. Blockade of morphine-induced analgesia and tolerance in mice by MK-801. Brain. Res. 616(1–2):83–88 (1993).

    PubMed  CAS  Google Scholar 

  111. H. N. Bhargava, S. S. Sharma, and J. T. Bian. Evidence for a role of N-methyl-D-aspartate receptors in L-arginine-induced attenuation of morphine antinociception. Brain. Res. 782(1–2):314–317 (1998).

    PubMed  CAS  Google Scholar 

  112. H. N. Bhargava, J. T. Bian, and S. Kumar. Mechanism of attenuation of morphine antinociception by chronic treatment with L-arginine. J. Pharmacol. Exp. Ther. 281(2):707–712 (1997).

    PubMed  CAS  Google Scholar 

  113. E. L. Heinzen, and G. M. Pollack. The development of morphine antinociceptive tolerance in nitric oxide synthase-deficient mice. Biochem. Pharmacol. 67(4):735–741 (2004).

    PubMed  CAS  Google Scholar 

  114. E. L. Heinzen, and G. M. Pollack. Use of an electrochemical nitric oxide sensor to detect neuronal nitric oxide production in conscious, unrestrained rats. J. Pharmacol. Toxicol. Methods. 48(3):139–146 (2002).

    PubMed  CAS  Google Scholar 

  115. E. L. Heinzen, and G. M. Pollack. Pharmacokinetics and pharmacodynamics of L-arginine in rats: a model of stimulated neuronal nitric oxide synthesis. Brain. Res. 989(1):67–75 (2003).

    PubMed  CAS  Google Scholar 

  116. E. L. Heinzen, and G. M. Pollack. Pharmacodynamics of morphine-induced neuronal nitric oxide production and antinociceptive tolerance development. Brain. Res. 1023(2):175–184 (2004).

    PubMed  CAS  Google Scholar 

  117. E. L. Heinzen, R. G. Booth, and G. M. Pollack. Neuronal nitric oxide modulates morphine antinociceptive tolerance by enhancing constitutive activity of the mu-opioid receptor. Biochem. Pharmacol. 69(4):679–688 (2005).

    PubMed  CAS  Google Scholar 

  118. D. M. Ouellet, and G. M. Pollack. A pharmacokinetic–pharmacodynamic model of tolerance to morphine analgesia during infusion in rats. J. Pharmacokinet. Biopharm. 23(6):531–549 (1995).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grant R01 GM61191. E.R.O. was supported by a predoctoral fellowship from GlaxoSmithKline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily O. Dumas.

Additional information

Guest Editors: Kathleen M. K. Boje and Gary M. Pollack

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumas, E.O., Pollack, G.M. Opioid Tolerance Development: A Pharmacokinetic/Pharmacodynamic Perspective. AAPS J 10, 537–551 (2008). https://doi.org/10.1208/s12248-008-9056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-008-9056-1

Key words

Navigation