Skip to main content
Log in

Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets

  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Cocaine- and amphetamine-regulated transcript (CART) peptides (55 to 102 and 62 to 102) are neurotransmitters with important roles in a number of physiologic processes. They have a role in drug abuse by virtue of the fact that they are modulators of mesolimbic function. Key findings supporting a role in drug abuse are as follows. First, high densities of CART-containing nerve terminals are localized in mesolimbic areas. Second, CART 55 to 102 blunts some of the behavioral effects of cocaine and dopamine (DA). This functional antagonism suggests that CART peptides be considered as targets for medications development. Third, CREB in the nucleus accumbens has been shown to have an opposing effect on cocaine self-administration. CREB may activate CART expression in that region, and, if so, CART may mediate at least some of the effects of CREB. Fourth, in addition to the effects of CART on DA, DA can influence CART in the accumbens. Thus a complex interacting circuitry likely exists. Fifth, in humans, CART is altered in the ventral tegmental area of cocaine overdose victims, and a mutation in the CART gene associates with alcoholism.

Overall, it is clear that there are functional interactions among CART, DA, and cocaine and that plausible cellular mechanisms exist to explain some of these actions. Future studies will clarify and extend these findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kuhar MJ, Adams S, Dominguez G, Jaworski J, Balkan B. CART peptides.Neuropeptides. 2002;36:1–8.

    Article  PubMed  CAS  Google Scholar 

  2. Hunter RG, Kuhar MJ. CART peptides as targets for CNS drug development.Curr Drug Targets CNS Neurol Disord. 2003;2:201–205.

    Article  PubMed  CAS  Google Scholar 

  3. Jaworski JN, Vicentic A, Hunter RG, Kimmel HL, Kuhar MJ. CART peptides are modulators of mesolimbic dopamine and psychostimulants.Life Sci. 2003;73:741–747.

    Article  PubMed  CAS  Google Scholar 

  4. Hunter RG, Philpot K, Vicentic A, Dominguez G, Hubert GW, Kuhar MJ. CART in feeding and obesity.Trends Endocrinol Metab. 2004;15:454–459.

    PubMed  CAS  Google Scholar 

  5. Louis JCM. Methods of preventing neuron degeneration and promoting neuron regeneration.Amgen, International Patent Application. 1996;Publication#WO96/34619.

  6. Thim L, Kristensen P, Larsen PJ, Wulff BS. CART, a new anorectic peptide.Int J Biochem Cell Biol. 1998;30:1281–1284.

    Article  PubMed  CAS  Google Scholar 

  7. Kimmel HL, Thim L, Kuhar MJ. Activity of various CART peptides in changing locomotor activity in the rat.Neuropeptides. 2002;36:9–12.

    Article  PubMed  CAS  Google Scholar 

  8. Kuhar MJ, Adams LD, Hunter RG, Vechia SD, Smith Y. CART peptides.Regul Pept. 2000;89:1–6.

    Article  PubMed  CAS  Google Scholar 

  9. Spiess J, Villarreal J, Vale W. Isolation and sequence analysis of a somatostatin-like polypeptide from ovine hypothalamus.Biochemistry. 1981;20:1982–1988.

    Article  PubMed  CAS  Google Scholar 

  10. Douglass J, McKinzie AA, Couceyro P. PCR differential display identifies a rat brain mRNA that is transcriptionally regulated by cocaine and amphetamine.J Neurosci. 1995;15:2471–2481.

    PubMed  CAS  Google Scholar 

  11. Kuhar MJ, Yoho LL. CART peptide analysis by Western blotting.Synapse. 1999;33:163–171.

    Article  PubMed  CAS  Google Scholar 

  12. Dey A, Xhu X, Carroll R, Turck CW, Stein J, Steiner DF. Biological processing of the cocaine and amphetamine-regulated transcript precursors by prohormone convertases, PC2 and PC1/3.J Biol Chem. 2003;278:15007–15014.

    Article  PubMed  CAS  Google Scholar 

  13. Koylu EO, Couceyro PR, Lambert PD, Ling NC, DeSouza EB, Kuhar MJ. Immunohistochemical localization of novel CART peptides in rat hypothalamus, pituitary and adrenal gland.J. Neuroendocrinol. 1997;9:823–833.

    Article  PubMed  CAS  Google Scholar 

  14. Koylu EO, Couceyro PR, Lambert PD, Kuhar MJ. Cocaine- and amphetamine-regulated transcript peptide immunohistochemical localization in the rat brain.J Comp Neurol. 1998;391:115–132.

    Article  PubMed  CAS  Google Scholar 

  15. Smith Y, Koylu EO, Couceyro P, Kuhar MJ. Ultrastructural localization of CART (cocaine-and amphetamine-regulated transcript) peptides in the nucleus accumbens of monkeys.Synapse. 1997;27:90–94.

    Article  PubMed  CAS  Google Scholar 

  16. Smith Y, Kieval J, Couceyro PR, Kuhar MJ. CART peptide-immunoreactive neurones in the nucleus accumbens in monkeys: ultrastructural analysis, colocalization studies, and synaptic interactions with dopaminergic afferents.J Comp Neurol. 1999;407:491–511.

    Article  PubMed  CAS  Google Scholar 

  17. Ekblad E, Kuhar M, Wierup N, Sundler F. Cocaine-and amphetamine-regulated transcript: distribution and function in rat gastrointestinal tract.Neurogastroenterol Motil. 2003;15:545–557.

    Article  PubMed  CAS  Google Scholar 

  18. Ellis LM, Mawe GM. Distribution and chemical coding of cocaine-and amphetamine-regulated transcript peptide (CART)-immunoreactive neurons in the guinea pig bowel.Cell Tissue Res. 2003;312:265–274.

    Article  PubMed  CAS  Google Scholar 

  19. Wierup N, Kuhar M, Nilsson BO, Mulder H, Ekblad E, Sundler F. Cocaine- and amphetamine-regulated transcript (CART) is expressed in several islet cell types during rat development.J. Histochem Cytochem. 2004;52:169–177.

    PubMed  CAS  Google Scholar 

  20. Wierup N, Yang S, McEvilly RJ, et al. Ghrelin is expressed in a novel endocrine cell type in developing rat islets and inhibits insulin secretion from INS-1 (832/13) cells.J Histochem Cytochem. 2004;52:301–310.

    PubMed  CAS  Google Scholar 

  21. Kobayashi Y, Jimenez-Krassel F, Li Q, et al. Evidence that cocaine- and amphetamine-regulated transcript is a novel intraovarian regulator of follicular atresia.Endocrinology. 2004;145:5373–5383.

    Article  PubMed  CAS  Google Scholar 

  22. Dun SL, Castellino SJ, Yang J, Chang JK, Dun NJ. Cocaine- and amphetamine-regulated transcript peptide-immunoreactivity in dorsal motor nucleus of the vagus neurons of immature rats.Brain Res Dev, Brain Res. 2001;131:93–102.

    Article  CAS  Google Scholar 

  23. Vicentic A, Dominguez G, Hunter RG, Philpot K, Wilson M, Kuhar MJ. CART peptide levels in blood exhibit a diurnal rhythm: regulation by glucocorticoids.Endocrinology. 2004;145:4119–4124.

    Article  PubMed  CAS  Google Scholar 

  24. Yermolaieva O, Chen J, Couceyro PR, Hoshi T. Cocaine- and amphetamine-regulated transcript peptide modulation of voltage-gated Ca2+ signaling in hippocampal neurons.J Neurosci. 2001;21:7474–7480.

    PubMed  CAS  Google Scholar 

  25. Davidowa H, Li Y, Plagemann A. Altered responses to orexigenic (AGRP, MCH) and anorexigenic (alpha-MSH, CART) neuropeptides of paraventricular hypothalamic neurons in early postnatally overfed rats.Eur J Neurosci. 2003;18:613–621.

    Article  PubMed  Google Scholar 

  26. Chaki S, Kawashima N, Suzuki Y, Shimizaki T, Okuyama S. Cocaine- and amphetamine-regulated transcript peptide produces anxiety-like behavior in rodents.Eur J Pharmacol. 2003;464:49–54.

    Article  PubMed  CAS  Google Scholar 

  27. Vrang N, Tang-Christensen M, Larsen PJ, Kristensen P. Recombinant CART peptide induces c-Fos expression in central areas involved in control of feeding behaviour.Brain Res. 1999;818:499–509.

    Article  PubMed  CAS  Google Scholar 

  28. Murphy KG, Abbott CR, Mahmoudi M, et al. Quantification and synthesis of cocaine- and amphetamine-regulated transcript peptide (79–102)-like immunoreactivity and mRNA in rat tissues.J Endocrinol. 2000;166:659–668.

    Article  PubMed  CAS  Google Scholar 

  29. Lambert P, Couceyro P, Koylu E, Ling N, DeSouza E, Kuhar M. A role for novel CART peptide fragments in the central control of food intake.Neuropeptides. 1997;31:620–621.

    Google Scholar 

  30. Lambert PD, Coucyro PR, McGirr KM, Dall Vechia SE, Smith Y, Kuhar MJ. CART peptides in the central control of feeding and interactions with neuropeptide Y.Synapse. 1998;29:293–298.

    Article  PubMed  CAS  Google Scholar 

  31. Kristensen P, Judge ME, Thim L, et al. Hypothalamic CART is a new anorectic peptide regulated by leptin.Nature. 1998;393:72–76.

    Article  PubMed  CAS  Google Scholar 

  32. Brenz Verca MS, Widmer DA, Wagner GC, Dreyer J. Cocaine-induced expression of the tetraspanin CD81 and its relation to hypothalamic function.Mol Cell Neurosci. 2001;17:303–316.

    Article  PubMed  CAS  Google Scholar 

  33. Fagergren P, Hurd YL. Mesolimbic gender differences in peptide CART mRNA expression: effects of cocaine.Neuroreport. 1999;10:3449–3452.

    Article  PubMed  CAS  Google Scholar 

  34. Vrang N, Larsen PJ, Kristensen P. Cocaine-amphetamine regulated transcript (CART) expression is not regulated by amphetamine.Neuroreport. 2002;13:1215–1218.

    Article  PubMed  CAS  Google Scholar 

  35. Marie-Claire C, Laurendeau I, Canestrelli C, et al. Fos but not Cart (cocaine and amphetamine regulated transcript) is overexpressed by several drugs of abuse: a comparative study using real-time quantitative polymerase chain reaction in rat brain.Neurosci Lett. 2003;345:77–80.

    Article  PubMed  CAS  Google Scholar 

  36. Dallvechia-Adams S, Kuhar MJ, Smith Y. Cocaine- and amphetamine-regulated transcript peptide projections in the ventral midbrain: Colocalization with gamma-aminobutyric acid, melan in-concentrating hormone, dynorphin, and synaptic interactions with dopamine neurons.J Comp Neurol. 2002;448:360–372.

    Article  PubMed  CAS  Google Scholar 

  37. Beaudry G, Zekki H, Rouillard C, Levesque D. Clozapine and dopamine D3 receptor antisense reduce cocaine- and amphetamine-regulated transcript expression in the rat nucleus accumbens shell.Synapse. 2004;51:233–240.

    Article  PubMed  CAS  Google Scholar 

  38. Smith Y, Pare JF, Pare D. Cat intraamygdaloid inhibitory network: ultrastructural organization of parvalbumin-immunoreactive elements.J Comp Neurol. 1998;391:164–179.

    Article  PubMed  CAS  Google Scholar 

  39. Tang WX, Fasulo WH, Mash DC, Hemby SE. Molecular profiling of midbrain dopamine regions in cocaine overdose victims.J Neurochem. 2003;85:911–924.

    Article  PubMed  CAS  Google Scholar 

  40. Albertson DN, Pruetz B, Schmidt CJ, Kuhn DM, Kapatos G, Bannon MJ. Gene expression profile of the nucleus accumbens of human cocaine abusers: evidence for dysregulation of myelin.J Neurochem. 2004;88:1211–1219.

    Article  PubMed  CAS  Google Scholar 

  41. Kimmel HL, Gong W, Vechia SD, Hunter RG, Kuhar MJ. Intra-ventral tegmental area injection of rat cocaine and amphetamine-regulated transcript peptide 55–102 induces locomotor activity and promotes conditioned place preference.J Pharmacol Exp Ther. 2000;294:784–792.

    PubMed  CAS  Google Scholar 

  42. Jaworski JN, Kozel MA, Philpot KB, Kuhar MJ. Intra-accumbal injection of CART (cocaine-amphetamine regulated transcript) peptide reduces cocaine-induced locomotor activity.J Pharmacol Exp Ther. 2003;307:1038–1044.

    Article  PubMed  CAS  Google Scholar 

  43. Kim JH, Creekmore E, Vezina P. Microinjection of CART peptide 55–102 into the nucleus accumbens blocks amphetamine-induced locomotion.Neuropeptides. 2003;37:369–373.

    Article  PubMed  CAS  Google Scholar 

  44. Shieh K. Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons.Neuropharmacology. 2003;44:940–948.

    Article  PubMed  CAS  Google Scholar 

  45. Yang S-C, Pan J-T, Li H-Y. CART peptide increases the mesolimbic dopaminergic neuronal activity: A microdialysis study.Eur J Pharmacol. 2004;494:179–182.

    Article  PubMed  CAS  Google Scholar 

  46. Staley JK, Mash DC. Adaptive increase in D3 dopamine receptors in the brain reward circuits of human cocaine fatalities.J Neurosci. 1996;16:6100–6106.

    PubMed  CAS  Google Scholar 

  47. Richtand NM, Logue AD, Welge JA, et al. The dopamine D3 receptor antagonist nafadotride inhibits development of locomotor sensitization to amphetamine.Brain Res. 2000;867:239–242.

    Article  PubMed  CAS  Google Scholar 

  48. Caine SB, Koob GF, Parsons LH, Everitt BJ, Schwartz JC, Sokoloff P. D3 receptor test in vitro predicts decreased cocaine self-adminstration in rats.Neuroreport. 1997;8:2373–2377.

    Article  PubMed  CAS  Google Scholar 

  49. Carlezon WA, Jr, Thome J, Olson VG, et al. Regulation of cocaine reward by CREB.Science. 1998;282:2272–2275.

    Article  PubMed  CAS  Google Scholar 

  50. Dominguez G, Lakatos A, Kuhar MJ. Characterization of the cocaine- and amphetamine-regulated transcript (CART) peptide gene promoter and its activation by a cyclic AMP-dependent signaling pathway in GH3 cells.J Neurochem. 2002;80:885–893.

    Article  PubMed  CAS  Google Scholar 

  51. Lakatos A, Dominguez G, Kuhar MJ. CART promoter CRE site binds phosphorylated CREB.Brain Res Mol Brain Res. 2002;104:81–85.

    Article  PubMed  CAS  Google Scholar 

  52. Dominguez G, Kuhar MJ. Transcriptional regulation of the CART promoter in CATH. a cells.Brain Res Mol Brain Res. 2004;126:22–29.

    Article  PubMed  CAS  Google Scholar 

  53. Barrett P, Morris MA, Moar KM, et al. The differential regulation of CART gene expression in a pituitary cell line and primary cell cultures of ovine pars tuberlis cells.J Neuroendocrinol. 2001;13:347–352.

    Article  PubMed  CAS  Google Scholar 

  54. Barrett P, Davidson J, Morgan P, et al. CART gene promoter transcription is regulated by a cyclic adenosine monophosphate response element: the differential regulation of CART gene expression in a pituitary cell line and primary cell cultures of ovine pars tuberalis cells.Obes Res. 2002;10:1291–1298.

    Article  PubMed  CAS  Google Scholar 

  55. Jung SK, Hong MS, Suh GJ, et al. Association between polymorphism in intron 1 of cocaine- and amphetamine-regulated transcript gene with alcoholism, but not with bipolar disorder and schizophrenia in Korean population.Neurosci Lett. 2004;365:54–57.

    Article  PubMed  CAS  Google Scholar 

  56. Goeders NE. Stress and cocaine addiction.J Pharmacol Exp Ther. 2002;301:785–789.

    Article  PubMed  CAS  Google Scholar 

  57. Goeders NE. The HPA axis and cocaine reinforcement.Psychoneuroendocrinology. 2002;27:13–33.

    Article  PubMed  CAS  Google Scholar 

  58. Yamada K, Yuan X, Otabe S, Koyanagi A, Koyama W, Makita Z. Sequencing of the putative promoter region of the cocaine- and amphetamine-regulated-transcript gene and identification of polymorphic sites associated with obesity.Int J Obes Relat Metab Disord. 2002;26:132–136.

    Article  PubMed  CAS  Google Scholar 

  59. del Guidice EM, Santoro N, Cirillo G, D'Urso L, Di Toro R, Perrone L. Mutational screening of the CART gene in obese children: identifying a mutation (Leu34Phe) associated with reduced resting energy expenditure and cosegregating with obesity phenotype in a large family.Diabetes. 2001;50:2157–2160.

    Article  Google Scholar 

  60. Yanik T, Dominguez G, Kuhar MJ, Loh YP. Mutant Leu34Phe Pro-CART in obese humans is missorted, poorly processed and constituvely secreted in endocrine cells.Annual Meeting the Endocrine Society, ENDO 2004. 2004.

  61. Asnicar MA, Smith DP, Yang DD, et al. Absence of cocaine- and amphetamine-regulated transcript results in obesity in mice fed a high caloric diet.Endocrinology. 2001;142:4394–4400.

    Article  PubMed  CAS  Google Scholar 

  62. Balkan B, Koylu EO, Kuhar MJ, Pogun S. The effect of adrenalectomy on cocaine and amphetamine-regulated transcript (CART) expression in the hypothalamic nuclei of the rat.Brain Res. 2001;917:15–20.

    Article  PubMed  CAS  Google Scholar 

  63. Balkan B, Koylu E, Pogun S, Kuhar MJ. Effects of adrenalectomy on CART expression in the rat arcuate nucleus.Synapse. 2003;50:14–19.

    Article  PubMed  CAS  Google Scholar 

  64. Vrang N, Larsen PJ, Kristensen P, Tang-Christensen M. Central administration of cocaine-amphetamine-regulated transcript activates hypothalamic neuroendocrine neurons in the rat.Endocrinology. 2000;141:794–801.

    Article  PubMed  CAS  Google Scholar 

  65. Sarkar S, Wittmann G, Fekete C, Lechan RM. Central administration of cocaine- and amphetamine-regulated transcript increases phosphorylation of cAMP response element binding protein in corticotropin-releasing hormone-producing neurons but not in prothyrotropin-releasing hormone-producing neurons in the hypothalamic paraventricular nucleus.Brain Res. 2004;999:181–192.

    Article  PubMed  CAS  Google Scholar 

  66. Damaj MI, Martin BR, Kuhar MJ. Antinociceptive effects of supraspinal rat cart (55–102) peptide in mice.Brain Res. 2003;983:233–236.

    Article  PubMed  CAS  Google Scholar 

  67. Damaj MI, Hunter RG, Martin BR, Kuhar MJ. Intrathecal CART (55–102) enhances the spinal analgesic actions of morphine in mice.Brain Res. 2004;1024:146–149.

    Article  PubMed  CAS  Google Scholar 

  68. Ohsawa M, Dun SL, Tseng LF, Chang J, Dun NJ. Decrease of hindpaw withdrawal latency by cocaine- and amphetamine-regulated transcript peptide to the mouse spinal cord.Eur J Pharmacol. 2000;399:165–169.

    Article  PubMed  CAS  Google Scholar 

  69. Larsen PJ, Seier V, Fink-Jensen A, Holst JJ, Warberg J, Vrang N. Cocaine- and amphetamine-regulated transcript is present in hypothalamic neuroendocrine neurones and is released to the hypothalamic-pituitary portal circuit.J Neuroendocrinol. 2003;15:219–226.

    Article  PubMed  CAS  Google Scholar 

  70. Baranowska B, Wolinska-Witort E, Chmielowska M, Martynska L, Baranowska-Bik A. Direct effects of cocaine-amphetamine-regulated transcript (CART) on pituitary hormone release in pituitary cell culture.Neuroendocrinol Lett. 2003;24:224–226.

    PubMed  CAS  Google Scholar 

  71. Shieh KR. Effects of the cocaine- and amphetamine-regulated transcript peptide on the turnover of central dopaminergic neurons.Neuropharmacology. 2003;44:940–948.

    Article  PubMed  CAS  Google Scholar 

  72. Kuriyama G, Takekoshi S, Tojo K, Nakai Y, Kuhar MJ, Osamura RY. Cocaine- and amphetamine-regulated transcript Peptide in the rat anterior pituitary gland is localized in gonadotrophs and suppresses prolactin secretion.Endocrinology. 2004;145:2542–2550.

    Article  PubMed  CAS  Google Scholar 

  73. Brischoux F, Griffond B, Fellmann D, Risold PY. Early and transient ontogenetic expression of the cocaine- and amphetamine-regulated transcript peptide in the rat mesencephalon: correlation with tyrosine hydroxylase expression.J Neurobiol. 2002;52:221–229.

    Article  PubMed  CAS  Google Scholar 

  74. Hunter R, Kuhar M. Dopaminergic regulation of CART mRNA in the nucleus accumbens.Soc Neurosci Abs. 2003;889:21.

    Google Scholar 

  75. Abarca C, Albrecht U, Spanagel R. Cocaine sensitization and reward are under the influence of circadian genes and rhythm.Proc Natl Acad Sci USA. 2002;99:9026–9030.

    Article  PubMed  CAS  Google Scholar 

  76. Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord.Neuron. 1998;21:1375–1385.

    Article  PubMed  CAS  Google Scholar 

  77. Thiel G, Cibelli G. Corticotropin-releasing factor and vasoactive intestinal polypeptide activate gene transcription through the cAMP signaling pathway in a catecholaminergic immortalized neuron.Neurochem Int. 1999;34:183–191.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Kuhar.

Additional information

Published: September 2, 2005

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhar, M.J., Jaworski, J.N., Hubert, G.W. et al. Cocaine- and amphetamine-regulated transcript peptides play a role in drug abuse and are potential therapeutic targets. AAPS J 7, 25 (2005). https://doi.org/10.1208/aapsj070125

Download citation

  • Received:

  • Accepted:

  • DOI: https://doi.org/10.1208/aapsj070125

Keywords

Navigation