Please wait a minute...
中国腐蚀与防护学报  2014, Vol. 34 Issue (4): 353-358    DOI: 10.11902/1005.4537.2014.045
  论文 本期目录 | 过刊浏览 |
酸性土壤浸出液中X80钢微生物腐蚀研究:(II) 腐蚀形貌和产物分析
吴堂清1, 杨圃2, 张明德3, 许进1, 闫茂成1, 于长坤1, 孙成1
1. 中国科学院金属研究所 金属腐蚀与防护国家重点实验室 沈阳 110016; 2. 新疆油田油气储运分公司 克拉玛依 834002; 3. 中国石油集团西部钻探工程有限公司 乌鲁木齐 830011
Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (II) Corrosion Morphology and Corrosion Product Analysis
WU Tangqing1, YANG Pu2, ZHANG Mingde3, XU Jin1, YAN Maocheng1, YU Changkun1, SUN Cheng1
1. State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China; 2. Oil-Gas Storage and Transportation Company, Xinjiang Oilfield Branch, Karamay 834002, China; 3. Xibu Drilling Engineering Co. Ltd., China National Petroleum Corporation, Urumqi 830011, China
全文: PDF(5449 KB)   HTML
摘要: 利用X射线光电子能谱分析 (XPS) 和扫描电子显微镜 (SEM) 研究了X80管线钢在一种酸性土壤浸出液中硫酸盐还原菌 (SRB) 腐蚀的产物成分和形貌。结果表明,SRB没有改变样品表面腐蚀产物膜的结构,但其生理过程促进了S从氧化态向还原态的转变,并促进了S在腐蚀产物中的沉积;同时代谢产物磷化物也沉积在腐蚀产物中,改变了腐蚀产物的成分。SRB提高了管线钢局部腐蚀的敏感性,使得腐蚀形式从非均匀腐蚀向局部腐蚀转变。SRB代谢产物和细菌/金属间的直接电子转移可能是促进局部腐蚀萌生的主要原因。
关键词 硫酸盐还原菌管线钢酸性土壤浸出液腐蚀形貌    
Abstract:In most cases, microbiologically induced corrosion (MIC) of pipeline was investigated in near neutral culture-media, however, the particular and new environments in which pipeline services were ignored. In this paper, morphology and composition of corrosion productsinduced by sulphate-reducing bacteria (SRB) in an acid soil solution of X80 pipeline steel were examined by X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The results showed that the activities of SRB have little influence on the structure of the corrosion product on the steel surface, while it facilitates the transformation of sulfur from oxidation states into redox status and thereby, the deposition of sulfide and phosphuret, altering the composition of the corrosion product. In the presence of SRB, the sensitivity to local corrosion of the steel is increased notably, and the metabolite of SRB and the direct electron transfer (DET) from the steel to SRB may be responsible for the increase.
Key wordssulphate-reducing bacteria    pipeline steel    acid soil solution    corrosion morphology
收稿日期: 2014-04-10     
ZTFLH:  TG172.4  
基金资助:国家自然科学基金项目(50971128和51131001)及国家科技基础条件平台建设项目(2005DKA10400CT-2-02)资助
通讯作者: 通讯作者:孙成,E-mail:chengsun@imr.ac.cn     E-mail: chengsun@imr.ac.cn
作者简介: 吴堂清,男,1987年生,博士生,研究方向为微生物作用下管线钢环境致裂行为

引用本文:

吴堂清, 杨圃, 张明德, 许进, 闫茂成, 于长坤, 孙成. 酸性土壤浸出液中X80钢微生物腐蚀研究:(II) 腐蚀形貌和产物分析[J]. 中国腐蚀与防护学报, 2014, 34(4): 353-358.
WU Tangqing, YANG Pu, ZHANG Mingde, XU Jin, YAN Maocheng, YU Changkun, SUN Cheng. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (II) Corrosion Morphology and Corrosion Product Analysis. Journal of Chinese Society for Corrosion and protection, 2014, 34(4): 353-358.

链接本文:

https://www.jcscp.org/CN/10.11902/1005.4537.2014.045      或      https://www.jcscp.org/CN/Y2014/V34/I4/353

[1] Liu Z Y, Li X G, Cheng Y F. Mechanistic aspect of near-neutral pH stress corrosion cracking of pipelines under cathodic polarization [J]. Corros. Sci., 2012, 55: 54-60
[2] Li M C, Cheng Y F. Corrosion of the stressed pipe steel in carbonate-bicarbonate solution studied by scanning localized electrochemical impedance spectroscopy [J]. Electrochim. Acta, 2008, 53(6): 2831-2836
[3] Liu Z Y, Li X G, Du C W, et al. Local additional potential model for effect of strain rate on SCC of pipeline steel in an acidic soil solution [J]. Corros. Sci., 2009, 51(12): 2863-2871
[4] Chen Y Q, Yu J Y. The evolution of interior properties of red soil under various use patterns [J]. Chin. J. Soil Sci., 2004, 35(2): 149-151 (陈永强, 俞劲炎. 不同利用方式下红壤内在性质的演化 [J]. 土壤通报, 2004, 35(2): 149-151)
[5] Zhang G Y, Lin Y Q, Lu Z L. Q235 steel's corrosion morphology in red soil under different moisture conditions [J]. Chin. Agric. Sci.Bull., 2010, 26(20): 393-396 (章钢娅, 林云青, 卢再亮. Q235钢在不同湿度红壤中的腐蚀形貌研究 [J]. 中国农学通报, 2010, 26(20): 393-396)
[6] (5): 8-10 (王永红, 鹿中晖, 李英志等. 碳钢、铜、铅、铝在不同土壤中的腐蚀特性 [J]. 现代传输, 2011, (5): 8-10)
[7] Angell P. Understanding microbially influenced corrosion as biofilm-mediated changes in surface chemistry [J]. Curr. Opin. Biotec-hnol., 1999, 10(3): 269-272
[8] Javaherdashti R. A review of some characteristics of MIC caused by sulphate-reducing bacteria: past, present and future [J]. Anti-Corros. Method. M., 1999, 46(3): 173-180
[9] Li X M, Zhang C Y, Zhu H, et al. Effect of erea on microbial corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2012, 32(5): 397-402 (李喜明, 张春颜, 朱辉等. 土壤中残余尿素对Q235钢微生物腐蚀的影响 [J]. 中国腐蚀与防护学报, 2012, 32(5): 397-402)
[10] Yang J X, Zhao P, Sun C, et al. Influence of sulphate reducing bacteria on crevice corrosion behavior of Q235 steel [J]. J. Chin. Soc. Corros. Prot., 2012, 32(1): 54-58 (杨佳星, 赵平, 孙成等. 硫酸盐还原菌对Q235钢缝隙腐蚀行为影响 [J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58)
[11] Liu H F, Liu T. Groth characteristics of thermophile sulfate-reducing bacteria and its effect on carbon steel [J]. J. Chin. Soc. Corros. Prot., 2009, 29(2): 93-98 (刘宏芳, 刘涛. 嗜热硫酸盐还原菌生长特征及其对碳钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98)
[12] Duan D X, Chen X G, Lin C G. 907A steel corrosion in artificial sulfate reducing bacteria biofilm [J]. J. Chin. Soc. Corros. Prot., 2011, 31(6): 453-456 (段东霞, 陈西广, 蔺存国. 硫酸盐还原菌模拟生物膜对907A钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456)
[13] Li F S, An M Z, Liu G Z, et al. Effect of sulfate-reducing bacteria on the pitting corrosion behavior of 18-8 stainless steel [J]. Acta Mettall. Sin., 2009, 45(5): 536-540 (李付绍, 安茂忠, 刘光洲等. 硫酸盐还原菌对18-8不锈钢点蚀行为的影响 [J]. 金属学报, 2009, 45(5): 536-540)
[14] Zhu Y Y, Huang Y L, Huang S D, et al. Hydrogen permeation of 16Mn steel in sea mud with sulfate reducing bacteria [J]. Corros.Sci. Prot. Technol., 2008, 20(2): 118-120 (朱永艳, 黄彦良, 黄偲迪等. 16Mn钢在海泥中的氢渗透行为研究 [J]. 腐蚀科学与防护技术, 2008, 20(2): 118-120)
[15] Li X M, Jin Z, Liu W Z, et al. Effects of urea on corrosion behavior of Q235 steel in soil [J]. J. Chin. Soc. Corros. Prot., 2013, 33(3): 216-220 (李喜明, 金哲, 刘五铸等. 尿素对土壤中Q235钢腐蚀的影响 [J]. 中国腐蚀与防护学报, 2013, 33(3): 216-220)
[16] Videla H A, Herrera L K. Microbiologically influenced corrosion: looking to the future [J]. Int. Microbiol., 2005, 8: 169-180
[17] Mansfeld F, Little B. A technical review of electrochemical techniques applied to microbiologically influenced corrosion [J]. Corros. Sci., 1991, 32(3): 247-272
[18] Sun C, Xu J, Wang F H, et al. Effect of sulfate reducing bacteria on corrosion of stainless steel 1Cr18Ni9Ti in soils containing chloride ions [J]. Mater. Chem. Phys., 2011, 126: 330-336
[19] Sun C, Xu J, Wang F. Interaction of sulfate-reducing bacteria and carbon steel Q235 in biofilm [J]. Ind. Eng. Chem. Res., 2011, 50: 12797-12806
[20] Wu T Q, Ding W C, Zeng D C, et al. Microbiologically Induced Corrosion of X80 Pipeline Steel in an Acid Soil Solution: (I) Electrochemical Analysis [J]. J. Chin. Soc. Corros. Prot., 2014, 34: 346-[20] (吴堂清, 丁万成, 曾德春等. 酸性土壤浸出液中X80钢微生物腐蚀研究: (I) 电化学分析 [J]. 中国腐蚀与防护学报, 2014, 34: 346-352)
[21] Sartz W E, Wynne K J, Hercules D M. X-ray photoelectron spectroscopic investigation of group VIA elements [J]. Anal. Chem., 1971, 43(13): 1884-1887
[22] Ichimura K, Sano M. Electrical conductivity of layered transition-metal phosphorus trisulfide crystals [J]. Synth. Met., 1991, 45(2): 203-211
[23] Binder H. Investigations on nature of chemical bonds in iron-sulfur compounds using X-ray photoelectron spectroscopy [J]. Z. Naturforsch. Sect. B, 1973, 28B(5/6): 255-262
[24] Vissers J P R, Groot C K, van Oers E M, et al. Carbon-supported transition metal sulfides [J]. Bull. Soc. Chim. Belg., 1984, 93(8/9): 813-822
[25] Sheng X, Ting Y P, Pehkonen S O. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316 [J]. Corros. Sci., 2007, 49(5): 2159-2176
[26] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435: 1098-1101
[27] Duan J, Wu S, Zhang X, et al. Corrosion of carbon steel influenced by anaerobic biofilm in natural seawater [J]. Electrochim. Acta, 2008, 54(1): 22-28
[28] Iversion W P. Corrosion of iron and formation of iron phosphide by desulfovibrio desulfuricans [J]. Nature, 1968, 217: 1265-1267
[1] 戴婷, 顾艳红, 高辉, 刘凯龙, 谢小辉, 焦向东. 水下摩擦螺柱焊接头在饱和CO2中的电化学性能[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[2] 董续成, 管方, 徐利婷, 段继周, 侯保荣. 海洋环境硫酸盐还原菌对金属材料腐蚀机理的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] 白云龙, 沈国良, 覃清钰, 韦博鑫, 于长坤, 许进, 孙成. 硫脲基咪唑啉季铵盐缓蚀剂对X80管线钢腐蚀的影响[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[4] 王欣彤, 陈旭, 韩镇泽, 李承媛, 王岐山. 硫酸盐还原菌作用下2205双相不锈钢在3.5%NaCl溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[5] 戴明杰, 刘静, 黄峰, 胡骞, 李爽. 基于正交方法研究阴极保护电位波动下X100管线钢的点蚀行为[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] 朱丽霞, 贾海东, 罗金恒, 李丽锋, 金剑, 武刚, 胥聪敏. 外加电位对X80管线钢在轮南土壤模拟溶液中应力腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[7] 王新华, 杨永, 陈迎春, 位凯玲. 交流电流对X100管线钢在库尔勒土壤模拟液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[8] 陈旭, 李帅兵, 郑忠硕, 肖继博, 明男希, 何川. X70管线钢在大庆土壤环境中微生物腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[9] 胡宗武, 刘建国, 邢蕊, 尹法波. 单相流条件下90°水平弯管冲刷腐蚀行为研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 115-122.
[10] 陈旭,马炯,李鑫,吴明,宋博. 温度与SRB协同作用下X70钢在海泥模拟溶液中应力腐蚀行为研究[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[11] 袁玮,黄峰,甘丽君,戈方宇,刘静. 显微组织对X100管线钢氢致开裂及氢捕获行为影响[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[12] 戚鹏, 万逸, 曾艳, 郑来宝, 张盾. 海洋环境中硫酸盐还原菌的快速测定方法研究[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[13] 吴堂清,周昭芬,王鑫铭,张德闯,尹付成,孙成. 微生物致裂的热力学和动力学分析[J]. 中国腐蚀与防护学报, 2019, 39(3): 227-234.
[14] 史显波,杨春光,严伟,徐大可,闫茂成,单以银,杨柯. 管线钢的微生物腐蚀[J]. 中国腐蚀与防护学报, 2019, 39(1): 9-17.
[15] 李鑫,陈旭,宋武琦,杨佳星,吴明. pH值对X70钢在海泥模拟溶液中微生物腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.