Please wait a minute...
材料研究学报  2016, Vol. 30 Issue (8): 575-580    DOI: 10.11901/1005.3093.2016.157
  本期目录 | 过刊浏览 |
高径比对W纤维/Zr基非晶复合材料压缩性能的影响*
张波1,2, 谢博文1, 付华萌2, 张海峰2
1. 沈阳航空航天大学材料科学与工程学院 沈阳 110136
2. 中国科学院金属研究所 沈阳 110016
Effect of Length to Diameter Ratio on Compressive Properties of W Fiber/Zr-based Metallic Glass Composite
ZHANG Bo1,2,**, XIE Bowen1, FU Huameng2, ZHANG Haifeng2
1. School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang, 110136, China
2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
引用本文:

张波, 谢博文, 付华萌, 张海峰. 高径比对W纤维/Zr基非晶复合材料压缩性能的影响*[J]. 材料研究学报, 2016, 30(8): 575-580.
Bo ZHANG, Bowen XIE, Huameng FU, Haifeng ZHANG. Effect of Length to Diameter Ratio on Compressive Properties of W Fiber/Zr-based Metallic Glass Composite[J]. Chinese Journal of Materials Research, 2016, 30(8): 575-580.

全文: PDF(2990 KB)   HTML
摘要: 

采用渗流铸造法制备W纤维/Zr基非晶复合材料, 研究高径比的变化对复合材料室温压缩力学性能的影响。结果表明, 复合材料的屈服强度随样品高径比的增大先降低, 高径比大于1时趋于平稳。高径比大于或等于1.25时, 复合材料的压缩塑性应变变化不大。高径比小于1.25时, 复合材料的压缩塑性应变均大于50%。压头与样品端部摩擦力的作用、W纤维之间非晶丝高径比的变化和W纤维与非晶基体之间变形的不匹配综合作用最终导致小高径比的复合材料样品具有更好的压缩力学性能。

关键词 金属材料W纤维/Zr基非晶复合材料高径比屈服强度压缩塑性剪切带    
Abstract

The W fiber/Zr-based metallic glass composite was prepared by infiltration and rapid solidification. The effect of the ratios of length to diameter of fibers on the compressive properties of the composite was investigated in detail. The results show that the yield strength firstly decreases with the increase of the length to diameter ratio then reaches a stable value when the ratio is greater than 1. The plastic strain has no obvious change when the ratio is greater than or equal to 1.25, while the plastic strain is bigger than 50% when the ratio is smaller than 1.25. The reason for these phenomena is the comprehensive effect of the friction force between pressure head and the end of the compressive sample, the change of the length to diameter ratio of the metallic glass fibers between W fibers and the mismatching between metallic glass matrix and the W fiber during deformation.

Key wordsmetallic materials    W fiber/Zr-based metallic glass composite    aspect ratio    yield strength    compressive plasticity    shear band
收稿日期: 2016-03-23     
基金资助:* 国家自然科学基金51401131资助项目
作者简介: 本文联系人: 张 波
图1  Zr基非晶和W纤维/Zr基非晶复合材料的XRD衍射谱
图2  不同高径比的Zr基非晶合金、W棒以及W纤维/Zr基非晶合金复合材料的压缩应力应变曲线
图3  压缩屈服强度随样品高径比的变化关系
图4  Zr基非晶合金变形后侧表面的剪切带形貌
图5  W纤维/Zr基非晶复合材料变形后侧表面的剪切带和裂纹形貌
图6  不同高径比的非晶合金压缩过程中剪切带扩展示意图
1 W. H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Progress in Materials Science, 57(3), 487(2012)
doi: 10.1016/j.pmatsci.2011.07.001
2 M. Q. Tang, H. F. Zhang, Z. W. Zhu, H. M. Fu, A. M. Wang, H. Li, Z. Q. Hu, TiZr-base Bulk Metallic Glass with over 50 mm in Diameter, Journal of Material Science and Technology, 26(6), 481(2010)
doi: 10.1016/S1005-0302(10)60077-1
3 M. Q. Jiang, W. H. Wang, L. H. Dai, Prediction of shear-band thickness in metallic glasses, Scripta Materialia, 60(11), 1004(2009)
doi: 10.1016/j.scriptamat.2009.02.039
4 Z. F. Zhang, G. He, J. Eckert, L. Schultz, Fracture mechanisms in bulk metallic glassy materials, Physical Review Letters, 91(4), 045505(2003)
5 Z. F. Zhang, J. Eckert, L. Schultz, Difference in compressive and tensile fracture mechanisms of Zr59Cu20Al10Ni8Ti3 bulk metallic glass, Acta Materialia, 51(4), 1167(2003)
doi: 10.1016/S1359-6454(02)00521-9
6 K. Zhang, P. C. Si, H. Li, Y. F. Li, Y. Y. Jiang, S. L. Zhang, X. G. Song, Plastic heterogeneity in nanoscale metallic glass, Physica E: Low-dimensional Systems and Nanostructures, 44(7-8), 1461(2012)
doi: 10.1016/j.physe.2012.03.012
7 F. F. Wu, Z. F. Zhang, S. X. Mao, Size-dependent shear fracture and global tensile plasticity of metallic glasses, Acta Materialia, 57(1), 257(2009)
doi: 10.1016/j.actamat.2008.09.012
8 S. Xie, E. P. George, Size-dependent plasticity and fracture of a metallic glass in compression, Intermetallics, 16(3), 485(2008)
doi: 10.1016/j.intermet.2007.11.013
9 B. E. Schuster, Q. Wei, T. C. Hufnagel, K. T. Ramesh, Size-independent strength and deformation mode in compression of a Pd-based metallic glass, Acta Materialia, 56(18), 5091(2008)
doi: 10.1016/j.actamat.2008.06.028
10 R. D. Conner, W. L. Johnson, N. E. Paton, W. D. Nix, Shear bands and cracking of metallic glass plates in bending, Journal of Applied Physics, 94, 904(2003)
doi: 10.1063/1.1582555
11 R. D. Conner, Y. Li, W. D. Nix, W. L. Johnson, Shear band spacing under bending of Zr-based metallic glass plates, Acta Materialia, 52(8), 2429(2004)
doi: 10.1016/j.actamat.2004.01.034
12 L. A. Davis, Y. T. Yeow, Flow and fracture of a Ni-Fe metallic glass, Journal of Materials Science, 15(1), 230(1980)
doi: 10.1007/BF00552449
13 J. J. Lewandowski, P. Lowhaphandu, Effects of hydrostatic pressure on the flow and fracture of a bulk amorphous metal, Philosophical Magazine A, 82(17-18), 3427(2002)
doi: 10.1080/01418610208240453
14 J. Lu, G. Ravichandran, W. L. Johnson, Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures, Acta Materialia, 51(12), 3429(2003)
doi: 10.1016/S1359-6454(03)00164-2
15 H. A. Bruck, T. Christman, A. J. Rosakis, W. L. Johnson, Quasi-static constitutive behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 bulk amorphous alloys, Scripta Metallurgica et Materialia, 30(4), 429(1994)
doi: 10.1016/0956-716X(94)90598-3
16 B. Zhang, H. Fu, Z. Zhu, A. Wang, H. Li, C. Dong, Z. Hu, H. Zhang, Synthesis and properties of tungsten balls/Zr-base metallic glass composite, Materials Science and Engineering: A, 540, 207(2012)
doi: 10.1016/j.msea.2012.01.127
17 H. F. Zhang, H. Li, A. M. Wang, H. M. Fu, B. Z. Ding, Z. Q. Hu, Synthesis and characteristics of 80 vol.% tungsten (W) fibre/Zr based metallic glass composite, Intermetallics, 17, 1070(2009)
18 J. Schroers, W. L. Johnson, Ductile Bulk Metallic Glass, Physical Review Letters, 93(25), 255506(2004)
19 Z. Zhang, G. He, H. Zhang, J. Eckert, Rotation mechanism of shear fracture induced by high plasticity in Ti-based nano-structured composites containing ductile dendrites, Scripta Materialia, 52(9), 945(2005)
doi: 10.1016/j.scriptamat.2004.12.014
[1] 毛建军, 富童, 潘虎成, 滕常青, 张伟, 谢东升, 吴璐. AlNbMoZrB系难熔高熵合金的Kr离子辐照损伤行为[J]. 材料研究学报, 2023, 37(9): 641-648.
[2] 宋莉芳, 闫佳豪, 张佃康, 薛程, 夏慧芸, 牛艳辉. 碱金属掺杂MIL125CO2 吸附性能[J]. 材料研究学报, 2023, 37(9): 649-654.
[3] 赵政翔, 廖露海, 徐芳泓, 张威, 李静媛. 超级奥氏体不锈钢24Cr-22Ni-7Mo-0.4N的热变形行为及其组织演变[J]. 材料研究学报, 2023, 37(9): 655-667.
[4] 邵鸿媚, 崔勇, 徐文迪, 张伟, 申晓毅, 翟玉春. 空心球形AlOOH的无模板水热制备和吸附性能[J]. 材料研究学报, 2023, 37(9): 675-684.
[5] 幸定琴, 涂坚, 罗森, 周志明. C含量对VCoNi中熵合金微观组织和性能的影响[J]. 材料研究学报, 2023, 37(9): 685-696.
[6] 欧阳康昕, 周达, 杨宇帆, 张磊. LPSOMg-Y-Er-Ni合金的组织和拉伸性能[J]. 材料研究学报, 2023, 37(9): 697-705.
[7] 徐利君, 郑策, 冯小辉, 黄秋燕, 李应举, 杨院生. 定向再结晶对热轧态Cu71Al18Mn11合金的组织和超弹性性能的影响[J]. 材料研究学报, 2023, 37(8): 571-580.
[8] 熊诗琪, 刘恩泽, 谭政, 宁礼奎, 佟健, 郑志, 李海英. 固溶处理对一种低偏析高温合金组织的影响[J]. 材料研究学报, 2023, 37(8): 603-613.
[9] 刘继浩, 迟宏宵, 武会宾, 马党参, 周健, 徐辉霞. 喷射成形M3高速钢热处理过程中组织的演变和硬度偏低问题[J]. 材料研究学报, 2023, 37(8): 625-632.
[10] 由宝栋, 朱明伟, 杨鹏举, 何杰. 合金相分离制备多孔金属材料的研究进展[J]. 材料研究学报, 2023, 37(8): 561-570.
[11] 任富彦, 欧阳二明. g-C3N4 改性Bi2O3 对盐酸四环素的光催化降解[J]. 材料研究学报, 2023, 37(8): 633-640.
[12] 王昊, 崔君军, 赵明久. 镍基高温合金GH3536带箔材的再结晶与晶粒长大行为[J]. 材料研究学报, 2023, 37(7): 535-542.
[13] 刘明珠, 樊娆, 张萧宇, 马泽元, 梁城洋, 曹颖, 耿仕通, 李玲. SnO2 作散射层的光阳极膜厚对量子点染料敏化太阳能电池光电性能的影响[J]. 材料研究学报, 2023, 37(7): 554-560.
[14] 秦鹤勇, 李振团, 赵光普, 张文云, 张晓敏. 固溶温度对GH4742合金力学性能及γ' 相的影响[J]. 材料研究学报, 2023, 37(7): 502-510.
[15] 刘天福, 张滨, 张均锋, 徐强, 宋竹满, 张广平. 缺口应力集中系数对TC4 ELI合金低周疲劳性能的影响[J]. 材料研究学报, 2023, 37(7): 511-522.