Please wait a minute...
金属学报  2022, Vol. 58 Issue (1): 17-27    DOI: 10.11900/0412.1961.2021.00193
  综述 本期目录 | 过刊浏览 |
高熵合金涂层研究进展
崔洪芝1,2(), 姜迪2
1. 中国海洋大学 材料科学与工程学院 青岛 266100
2. 山东科技大学 材料科学与工程学院 青岛 266590
Research Progress of High-Entropy Alloy Coatings
CUI Hongzhi1,2(), JIANG Di2
1. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
2. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
引用本文:

崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(1): 17-27.
Hongzhi CUI, Di JIANG. Research Progress of High-Entropy Alloy Coatings[J]. Acta Metall Sin, 2022, 58(1): 17-27.

全文: PDF(1346 KB)   HTML
摘要: 

制备各类涂层对材料表面进行强化是提高材料服役性能的重要途径,可根据服役环境要求,在不影响基体性能的前提下,通过调控工艺改变涂层成分、组织结构,从而改善其性能,延长部件的使用寿命。高熵合金及其涂层是近年来材料领域的研究热点,具有优异的强度、韧性、耐蚀性、耐磨性等特点,在表面工程领域的应用发展迅速。通过设计不同体系的高熵合金涂层,开发高效的制备工艺方法,将其应用于表面工程领域,有望成为耐磨、耐蚀、耐热等极端环境装备关键部件表面强化的理想手段。本文从高熵合金涂层的分类与制备方法出发,详细介绍了目前高熵合金涂层的最新研究成果,归纳了高熵合金涂层的成分、组织结构、性能以及磨损与腐蚀机理,并对其在表面工程领域应用亟待解决的问题及未来发展方向进行了展望。

关键词 高熵合金涂层磨损腐蚀    
Abstract

Preparing various types of coatings to strengthen the surface of materials is an effective technique to increase the materials' service performance. The qualities of the coatings can be considerably improved based on the service environment by altering their composition and microstructure without impacting the substrate's performance, thereby extending the equipment's service life. Recently, high- entropy alloys (HEAs) and their coatings have been the focus in materials science. The applications in surface engineering have developed rapidly owing to their outstanding strength, toughness, corrosion resistance, and wear resistance. By designing different HEA coatings and developing efficient preparation methods for surface engineering, HEA coatings are expected to be an ideal candidate for surface strengthening of key components suffering from wear, corrosion, and elevated temperature in an extreme environment. In this paper, the latest research results are detailed and the compositions, structures, properties, and wear and corrosion mechanisms of HEA coating from the characters viewpoint, classification, and preparation methods of HEA coatings are summarized. In addition, the issues that must be solved in the surface engineering field and the developing direction in the future were proposed.

Key wordshigh-entropy alloy (HEA) coating    wear    corrosion
收稿日期: 2021-05-07     
ZTFLH:  TG178  
基金资助:国家自然科学基金项目(51971121);山东省重大科技创新工程项目(2019JZZY010303)
Coating Process parameter Amorphous content Microhardness Ref.
(atomic fraction / %) Power Scanning rate Remelting (volume fraction) HV
kW mm·min-1
Fe60.3Cr18Mo17B2.5C2.2 4.0 2000 No ~50% 1085.6 [32]
Fe42Cr23Mo10C12B13 2.5 600 No 45% 900 [33]
Fe37.5Cr27.5C12B13Mo10 2.0/1.4 360 Yes > 50% - [34]
Fe45.8Mo24.2Cr14.7Co7.8C3.2B4.3 0.5 600 No 52.8% 1200 [35]
Fe34Co34B20Si5C3Nb4 1.9 3000 No ~90% 1245 [36]
Fe34Co34B20Si5C3Nb4 1.2 1020 No 87.6% 1283 [37]
Fe35.9Co35.9B19Si4.8Nb4.3 1.2 1020 No 80%-90% - [38]
Ni40.8Fe27.2B18Si10Nb4 0.7/3.5 8000 Yes 63% 1200 [39]
(Ni100 - x Fe x )62B18Si18Nb2 5.5/14 8000 Yes 36%-48% > 1200 [40]
Co34Cr29B14Fe8Ni8Si7 0.52 100 No 85.1% - [41]
Co34Cr29B14Fe8Ni8Si7 0.233 100 No 81.15% 1192.5 [42]
Ni39Fe26B18Si10Nb4C3 2.75 2400 No 76.7% 1187 [43]
Fe48.7Cr23.8Mo8.2B9.1C8.2Nb2 4.0 900 No ~50% 1024 [44]
(Fe25Co25Ni25(B0.7Si0.3)25)100 - x Nb x 2.5/3 1200 Yes A little > 800 [45]
Fe25Co25Ni25(B x Si1 - x )25 2.0/1.5 300 Yes - 839 [31]
Fe36Cr32Co14.5Ni10Si4.25B3.25 0.467 100 No 49% - [30]
Fe21.84Cr29Co20.16Ni8Si7B14 0.467 100 No 66.7% 850 [46]
表1  非晶/高熵非晶合金涂层[30~46]
图1  激光熔覆CoCrFeNiSiB高熵非晶合金涂层凝固组织[42]
图2  等离子熔覆(CoCrFeMnNi)85Ti15高熵合金涂层[52]
图3  高速火焰喷涂 Fe49.7Cr18Mn1.9Mo7.4W1.6B15.2C3.8Si2.4非晶涂层的SEM像[55]
1 Yeh J W , Chen S K , Lin S J , et al . Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
2 Wang Y Q , Liu B , Yan K , et al . Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction [J]. Acta Mater., 2018, 154: 79
3 Hsu C Y , Juan C C , Wang W R , et al . On the superior hot hardness and softening resistance of AlCoCr x FeMo0.5Ni high-entropy alloys [J]. Mater. Sci. Eng., 2011, A528: 3581
4 Song Q T , Xu Y K , Xu J . Dry-sliding wear behavior of (TiZrNb-Ta)90Mo10 high-entropy alloy against Al2O3 [J]. Acta Metall. Sin., 2020, 56: 1507
4 宋芊汀, 徐映坤, 徐 坚 . (TiZrNbTa)90Mo10高熵合金与Al2O3干摩擦条件下的滑动磨损行为 [J]. 金属学报, 2020, 56: 1507
5 Yang H O , Shang X L , Wang L L , et al . Effect of constituent elements on the corrosion resistance of single-phase CoCrFeNi high-entropy alloys in NaCl solution [J]. Acta Metall. Sin., 2018, 54: 905
5 杨海欧, 尚旭亮, 王理林 等 . 单相CoCrFeNi高熵合金的组成元素对其在NaCl溶液中的耐蚀性能的影响 [J]. 金属学报, 2018, 54: 905
6 Li Z Z , Zhao S T , Ritchie R O , et al . Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys [J]. Prog. Mater. Sci., 2019, 102: 296
7 Cantor B , Chang I T H , Knight P , et al . Microstructural development in equiatomic multicomponent alloys [J]. Mater. Sci. Eng., 2004, A375-377: 213
8 Wang W R , Wang W L , Wang S C , et al . Effects of Al addition on the microstructure and mechanical property of Al x CoCrFeNi high-entropy alloys [J]. Intermetallics, 2012, 26: 44
9 Singh S , Wanderka N , Murty B S , et al . Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy [J]. Acta Mater., 2011, 59: 182
10 Jiang H L , Hu Z F , Yuan X T , et al . Microstructure and mechanical properties of TiZrHfNbSc refractory high entropy alloy [J]. Rare Met. Mater. Eng., 2020, 49: 2820
10 江洪林, 胡志方, 袁学韬 等 . TiZrHfNbSc难熔高熵合金的组织和力学性能 [J]. 稀有金属材料与工程, 2020, 49: 2820
11 Qiu Y , Thomas S , Gibson M A , et al . Corrosion of high entropy alloys [J]. npj Mater. Degrad., 2017, 1: 15
12 Turnbull D . Under what conditions can a glass be formed? [J]. Contem. Phys., 1969, 10: 473
13 Inoue A . Stabilization of metallic supercooled liquid and bulk amorphous alloys [J]. Acta Mater., 2000, 48: 279
14 Cheng J L , Chen G , Gao P , et al . The critical cooling rate and microstructure evolution of Zr41.2Ti13.8Cu12.5Ni10Be22.5 composites by Bridgman solidification [J]. Intermetallics, 2010, 18: 115
15 Shen J , Chen Q J , Sun J F , et al . Exceptionally high glass-forming ability of an FeCoCrMoCBY alloy [J]. Appl. Phys. Lett., 2005, 86: 151907
16 Wu C L , Zhang S , Zhang C H , et al . Phase evolution of FeCoCrAlCuNiMo x coatings by laser high-entropy alloying on stainless steels [J]. Acta Metall. Sin., 2016, 52: 797
16 吴臣亮, 张 松, 张春华 等 . 不锈钢表面FeCoCrAlCuNiMo x 激光高熵合金化层的相演变 [J]. 金属学报, 2016, 52: 797
17 Zhao K , Xia X X , Bai H Y , et al . Room temperature homogeneous flow in a bulk metallic glass with low glass transition temperature [J]. Appl. Phys. Lett., 2011, 98: 141913
18 Zhang S Y , Gao Y Y , Zhang Z B , et al . Research progress in corrosion resistance of high-entropy metallic glasses [J]. J. Mater. Eng., 2021, 49(1): 44
18 张舒研, 高洋洋, 张志彬 等 . 高熵非晶合金耐腐蚀性能研究进展 [J]. 材料工程, 2021, 49(1): 44
19 Sun H J , Man Q K , Dong Y Q , et al . Effect of Nb addition on the glass-forming ability, mechanical and soft-magnetic properties in (Co0.942Fe0.058)72 - x Nb x B22.4Si5.6 bulk glassy alloys [J]. J. Alloys Compd., 2010, 504: S31
20 Shen B L , Zhou Y J , Chang C T , et al . Effect of B to Si concentration ratio on glass-forming ability and soft-magnetic properties in (Co0.705Fe0.045B0.25 - x Si x )96Nb4 glassy alloys [J]. J. Appl. Phys., 2007, 101: 09N101
21 Amiya K , Inoue A . Fe-(Cr, Mo)-(C, B)-Tm bulk metallic glasses with high strength and high glass-forming ability [J]. Mater. Trans., 2006, 47: 1615
22 Müller F , Gorr B , Christ H J , et al . On the oxidation mechanism of refractory high entropy alloys [J]. Corros. Sci., 2019, 159: 108161
23 Guo Y X , Liu Q B . MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding [J]. Intermetallics, 2018, 102: 78
24 Ye F X , Jiao Z P , Yan S , et al . Microbeam plasma arc remanufacturing: Effects of Al on microstructure, wear resistance, corrosion resistance and high temperature oxidation resistance of Al x CoCr-FeMnNi high-entropy alloy cladding layer [J]. Vacuum, 2020, 174: 109178
25 Xiang K , Chen L Y , Chai L J , et al . Microstructural characteristics and properties of CoCrFeNiNb x high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding [J]. Appl. Surf. Sci., 2020, 517: 146214
26 Zhang M N , Zhou X L , Yu X N , et al . Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding [J]. Surf. Coat. Technol., 2017, 311: 321
27 Song P F , Jiang F L , Wang Y L , et al . Advances in the preparation of high entropy alloy coatings by laser cladding [J]. Surf. Technol., 2021, 50(1): 242
27 宋鹏芳, 姜芙林, 王玉玲 等 . 激光熔覆制备高熵合金涂层研究进展 [J]. 表面技术, 2021, 50(1): 242
28 Cheng J B , Liu D , Liang X B , et al . Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCr-CuFeNi high entropy alloy coatings [J]. Surf. Coat. Technol., 2015, 281: 109
29 Peng Y B , Zhang W , Li T C , et al . Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105044
30 Shu F Y , Liu S , Zhao H Y , et al . Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder [J]. J. Alloys Compd., 2018, 731: 662
31 Cheng J B , Sun B , Ge Y Y , et al . Effect of B/Si ratio on structure and properties of high-entropy glassy Fe25Co25Ni25(B x Si1 - x )25 coating prepared by laser cladding [J]. Surf. Coat. Technol., 2020, 402: 126320
32 Cao S L , Liang J , Zhou J S , et al . Microstructure evolution and wear resistance of in-situ nanoparticles reinforcing Fe-based amorphous composite coatings [J]. Surf. Interface, 2020, 21: 100652
33 Li G , Gan Y Y , Liu C H , et al . Corrosion and wear resistance of Fe-based amorphous coatings [J]. Coatings, 2020, 10: 73
34 Huang G K , Qu L D , Lu Y Z , et al . Corrosion resistance improvement of 45 steel by Fe-based amorphous coating [J]. Vacuum, 2018, 153: 39
35 Hou X C , Du D , Wang K M , et al . Microstructure and wear resistance of Fe-Cr-Mo-Co-C-B amorphous composite coatings synthesized by laser cladding [J]. Metals, 2018, 8: 622
36 Zhu Y Y , Li Z G , Li R F , et al . High power diode laser cladding of Fe-Co-B-Si-C-Nb amorphous coating: Layered microstructure and properties [J]. Surf. Coat. Technol., 2013, 235: 699
37 Zhu Y Y , Li Z G , Li R F , et al . Microstructure and property of Fe-Co-B-Si-C-Nb amorphous composite coating fabricated by laser cladding process [J]. Appl. Surf. Sci., 2013, 280: 50
38 Zhu Y Y , Li Z G , Huang J , et al . Amorphous structure evolution of high power diode laser cladded Fe-Co-B-Si-Nb coatings [J]. Appl. Surf. Sci., 2012, 261: 896
39 Li R F , Li Z G , Huang J , et al . Dilution effect on the formation of amorphous phase in the laser cladded Ni-Fe-B-Si-Nb coatings after laser remelting process [J]. Appl. Surf. Sci., 2012, 258: 7956
40 Li R F , Li Z G , Huang J , et al . Effect of Ni-to-Fe ratio on structure and properties of Ni-Fe-B-Si-Nb coatings fabricated by laser processing [J]. Appl. Surf. Sci., 2011, 257: 3554
41 Shu F Y , Wu L , Zhao H Y , et al . Microstructure and high-temperature wear mechanism of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coating [J]. Mater. Lett., 2018, 211: 235
42 Shu F Y , Zhang B L , Liu T , et al . Effects of laser power on microstructure and properties of laser cladded CoCrBFeNiSi high-entropy alloy amorphous coatings [J]. Surf. Coat. Technol., 2019, 358: 667
43 Jin Y J , Li R F , Zheng Q C , et al . Structure and properties of laser-cladded Ni-based amorphous composite coatings [J]. Mater. Sci. Technol., 2016, 32: 1206
44 Wang H Z , Cheng Y H , Zhang X C , et al . Effect of laser scanning speed on microstructure and properties of Fe based amorphous/nanocrystalline cladding coatings [J]. Mater. Chem. Phys., 2020, 250: 123091
45 Cheng J B , Sun B , Ge Y Y , et al . Nb doping in laser-cladded Fe25Co25Ni25(B0.7Si0.3)25 high entropy alloy coatings: Microstructure evolution and wear behavior [J]. Surf. Coat. Technol., 2020, 402: 126321
46 Shu F Y , Yang B , Dong S Y , et al . Effects of Fe-to-Co ratio on microstructure and mechanical properties of laser cladded FeCoCrBNiSi high-entropy alloy coatings [J]. Appl. Surf. Sci., 2018, 450: 538
47 Gostin P F , Gebert A , Schultz L . Comparison of the corrosion of bulk amorphous steel with conventional steel [J]. Corros. Sci., 2010, 52: 273
48 Yang L , Yu T B , Li M , et al . Microstructure and wear resistance of in-situ synthesized Ti(C, N) ceramic reinforced Fe-based coating by laser cladding [J]. Ceram. Int., 2018, 44: 22538
49 Sun S T , Fu H G , Ping X L , et al . Reinforcing behavior and microstructure evolution of NbC in laser cladded Ni45 coating [J]. Appl. Surf. Sci., 2018, 455: 160
50 Zhang C , Wu B Q , Wang Q T , et al . Microstructure and properties of FeCrNiCoMnB x high-entropy alloy coating prepared by laser cladding [J]. Rare Met. Mater. Eng., 2017, 46: 2639
50 张 冲, 吴炳乾, 王乾廷 等 . 激光熔覆FeCrNiCoMnB x 高熵合金涂层的组织结构与性能 [J]. 稀有金属材料与工程, 2017, 46: 2639
51 Zhang B S , Cheng J B , Xu B S . (CuCoCrFeNi)95B5 high-entropy alloy coatings prepared by plasma transferred arc cladding process [J]. Rare Met. Mater. Eng., 2014, 43: 1128
51 张保森, 程江波, 徐滨士 . 等离子熔覆(CuCoCrFeNi)95B5高熵合金涂层研究 [J]. 稀有金属材料与工程, 2014, 43: 1128
52 Wang J Y , Zhang B S , Yu Y Q , et al . Study of high temperature friction and wear performance of (CoCrFeMnNi)85Ti15 high-entropy alloy coating prepared by plasma cladding [J]. Surf. Coat. Technol., 2020, 384: 125337
53 Wei S Y , Peng W Y , Zhao W C , et al . Research on parameter optimization and microstructure and properties of CoCrFeMnNi high entropy alloy coating cladded by plasma arc welding [J]. Mater. Rev., 2020, 34: 17052
53 魏仕勇, 彭文屹, 赵文超 等 . 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究 [J]. 材料导报, 2020, 34: 17052
54 Yuan J J , Wang Q Z , Liu X Y , et al . Microstructures and high-temperature wear behavior of NiAl/WC-Fe x coatings on carbon steel by plasma cladding [J]. J. Alloys Compd., 2020, 842: 155850
55 Wu J , Zhang S D , Sun W H , et al . Enhanced corrosion resistance in Fe-based amorphous coatings through eliminating Cr-depleted zones [J]. Corros. Sci., 2018, 136: 161
56 Zhang S D , Wu J , Qi W B , et al . Effect of porosity defects on the long-term corrosion behaviour of Fe-based amorphous alloy coated mild steel [J]. Corros. Sci., 2016, 110: 57
57 Zhang S D , Zhang W L , Wang S G , et al . Characterisation of three-dimensional porosity in an Fe-based amorphous coating and its correlation with corrosion behaviour [J]. Corros. Sci., 2015, 93: 211
58 Wu J , Cui J P , Zheng Q J , et al . Insight into the corrosion evolution of Fe-based amorphous coatings under wet-dry cyclic conditions [J]. Electrochim. Acta, 2019, 319: 966
59 Xiao J K , Wu Y Q , Chen J , et al . Microstructure and tribological properties of plasma sprayed FeCoNiCrSiAl x high entropy alloy coatings [J]. Wear, 2020, 448-449: 203209
60 Li W , Liu P , Liaw P K . Microstructures and properties of high-entropy alloy films and coatings: A review [J]. Mater. Res. Lett., 2018, 6: 199
61 Wu T , Duan J W , Chen X M , et al . Research progress of the effect of alloying element on laser cladding high-entropy alloy coatings [J]. Mater. Rev., 2020, 34(suppl.): 413
61 吴 韬, 段佳伟, 陈小明 等 . 合金元素对激光熔覆高熵合金涂层影响的研究进展 [J]. 材料导报, 2020, 34(): 413
62 Guo Y J , Li C G , Zeng M , et al . In-situ TiC reinforced CoCrCuFeNiSi0.2 high-entropy alloy coatings designed for enhanced wear performance by laser cladding [J]. Mater. Chem. Phys., 2020, 242: 122522
63 Jiang P F , Zhang C H , Zhang S , et al . Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying [J]. Mater. Chem. Phys., 2020, 255: 123571
64 Juan Y F , Li J , Jiang Y Q , et al . Modified criterions for phase prediction in the multi-component laser-clad coatings and investigations into microstructural evolution/wear resistance of FeCrCoNiAlMo x laser-clad coatings [J]. Appl. Surf. Sci., 2019, 465: 700
65 Jia C T , Sha M H , Li S L , et al . Research progress on corrosion performance of high entropy alloy Coatings [J]. Corros. Sci. Prot. Technol., 2019, 31: 343
65 贾春堂, 沙明红, 李胜利 等 . 高熵合金涂层腐蚀性能研究进展 [J]. 腐蚀科学与防护技术, 2019, 31: 343
66 Wei L , Wang Z J , Wu Q J , et al . Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMo x high-entropy alloy in NaCl solution [J]. Acta Metall. Sin., 2019, 55: 840
66 魏 琳, 王志军, 吴庆峰 等 . Mo元素及热处理对Ni2CrFeMo x 高熵合金在NaCl溶液中耐蚀性能的影响 [J]. 金属学报, 2019, 55: 840
67 Liu J , Liu H , Chen P J , et al . Microstructural characterization and corrosion behaviour of AlCoCrFeNiTi x high-entropy alloy coatings fabricated by laser cladding [J]. Surf. Coat. Technol., 2019, 361: 63
68 Bao Y Y , Ji X L , Ji C C , et al . Corrosion and slurry erosion properties of FeCrNiCoCuAl x high-entropy alloy coatings prepared by laser cladding [J]. J. Mater. Eng., 2019, 47(11): 141
68 鲍亚运, 纪秀林, 姬翠翠 等 . 激光熔覆FeCrNiCoCuAl x 高熵合金涂层的耐腐蚀与抗冲蚀性能 [J]. 材料工程, 2019, 47(11): 141
69 Jiang Y Q , Li J , Juan Y F , et al . Evolution in microstructure and corrosion behavior of AlCoCr x FeNi high-entropy alloy coatings fabricated by laser cladding [J]. J. Alloys Compd., 2019, 775: 1
70 Qiu X W . Corrosion behavior of Al2CrFeCo x CuNiTi high-entropy alloy coating in alkaline solution and salt solution [J]. Results Phys., 2019, 12: 1737
71 Qiu X W , Liu C G . Microstructure and properties of Al2CrFeCoCuTiNi x high-entropy alloys prepared by laser cladding [J]. J. Alloys Compd., 2013, 553: 216
72 Meghwal A , Anupam A , Murty B S , et al . Thermal spray high-entropy alloy coatings: A review [J]. J. Therm. Spray Technol., 2020, 29: 857
73 Wang W R , Qi W , Xie L , et al . Microstructure and corrosion behavior of (CoCrFeNi)95Nb5 high-entropy alloy coating fabricated by plasma spraying [J]. Materials, 2019, 12: 694
74 Vallimanalan A , Kumaresh Babu S P , Muthukumaran S , et al . Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating [J]. Mater. Today: Proc., 2020, 27: 2398
[1] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[2] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[3] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[4] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[5] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[6] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[7] 冯力, 王贵平, 马凯, 杨伟杰, 安国升, 李文生. 冷喷涂辅助感应重熔合成AlCo x CrFeNiCu高熵合金涂层的显微组织和性能[J]. 金属学报, 2023, 59(5): 703-712.
[8] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[9] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[10] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 苗军伟, 王明亮, 张爱军, 卢一平, 王同敏, 李廷举. AlCr1.3TiNi2 共晶高熵合金的高温摩擦学性能及磨损机理[J]. 金属学报, 2023, 59(2): 267-276.
[14] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[15] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.