Please wait a minute...
金属学报  2016, Vol. 52 Issue (1): 78-84    DOI: 10.11900/0412.1961.2015.00260
  本期目录 | 过刊浏览 |
Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*
王桢1,2,周邦新1,2(),王波阳1,2,黄娇1,2,姚美意1,2,张金龙1,2
1 上海大学材料研究所, 上海 200072
2 上海大学微结构研究中心, 上海 200444
SECOND PHASE PARTICLES AND THEIR CORROSION BEHAVIOR OF Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb ALLOY
Zhen WANG1,2,Bangxin ZHOU1,2(),Boyang WANG1,2,Jiao HUANG1,2,Meiyi YAO1,2,Jinlong ZHANG1,2
1 Institute of Materials, Shanghai University, Shanghai 200072, China
2 Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
引用本文:

王桢,周邦新,王波阳,黄娇,姚美意,张金龙. Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金中的第二相及其腐蚀行为*[J]. 金属学报, 2016, 52(1): 78-84.
Zhen WANG, Bangxin ZHOU, Boyang WANG, Jiao HUANG, Meiyi YAO, Jinlong ZHANG. SECOND PHASE PARTICLES AND THEIR CORROSION BEHAVIOR OF Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb ALLOY[J]. Acta Metall Sin, 2016, 52(1): 78-84.

全文: PDF(6000 KB)   HTML
摘要: 

将再结晶退火后的Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金在300 ℃, 8 MPa去离子水的高压釜中短时腐蚀, 用TEM, EDS和SEM研究了合金中的第二相及其腐蚀行为. 结果表明, 第二相的尺寸主要分布在30~100 nm, 最大尺寸为230 nm. 第二相成分中的Nb/Zr比(原子比)与其尺寸大小和晶体结构有一定的相关性, 当Nb/Zr=0时, 第二相粒子尺寸大于150 nm; 当0.100.75时, 第二相粒子尺寸小于30 nm. 第二相的腐蚀行为与其成分密切相关, Nb/Zr比大于0.5时, 第二相更容易被腐蚀, 并形成非晶氧化物.

关键词 锆合金第二相颗粒晶体结构氧化Nb/Zr原子比    
Abstract

Zr-0.72Sn-0.32Fe-0.15Cr alloy, which has much better corrosion resistance than that of Zr-4 alloy, was alloying by adding 1%Nb (mass fraction). In order to understand the effect of Nb on the corrosion resistance of Zr-0.72Sn-0.32Fe-0.15Cr alloy, the second phase particles (SPPs) and their oxidation behavior in this alloy were investigated using TEM, SEM and EDS techniques. Thin foil specimens for TEM observation were prepared for Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb alloy after recrystallization annealing. The corrosion tests for these thin foil specimens were conducted in an autoclave at 300 ℃, 8 MPa in deionized water for short time exposure. The results showed that a thin oxide layer in several hundred nanometers mainly consisted of the monoclinic ZrO2 formed on the surface, and SPPs embedded in the thin foil specimens at different corrosion levels were observed after corrosion test. The sizes of SPPs were mainly distributed between 30~150 nm and the maximum size was 230 nm. The size and crystal structure of SPPs have a relationship with Nb/Zr ratio (atomic ratio) of their composition. When Nb/Zr ratio was about zero, the size of SPPs was over 150 nm. When Nb/Zr ratio was in the range of 0.10~0.50, the sizes of SPPs were between 60~150 nm. When Nb/Zr ratio were in the range of 0.50~0.75, the sizes of SPPs were between 30~60 nm. When Nb/Zr ratio was over 0.75, the size of SPPs was smaller than 30 nm. With the increase of Nb/Zr ratio of their composition, three kinds crystal structure of Nb-containing SPPs, fcc (lattice constant a=0.701 nm), hcp (lattice constants a=0.508 nm, c=0.832 nm) and bcc (a=0.325 nm) structures were detected. SPPs without Nb containing have fcc structure (a=0.817 nm) while Fe/Cr ratio was over 5.00 and hcp structure (a=0.492 nm, c=0.788 nm) while Fe/Cr ratio was less than 3.00. The oxidation behavior of SPPs also had a relationship with the Nb/Zr ratio. The SPPs were easy to be oxidized to amorphous when Nb/Zr ratio was over 0.50. However, the SPPs with Nb/Zr ratio less than 0.50 were difficult to be oxidized.

Key wordsZr alloy    second phase particle    crystal structure    oxidation    Nb/Zr atomic ratio
收稿日期: 2015-05-13     
基金资助:国家自然科学基金项目51171102 和51271104 资助
图1  Zr-0.72Sn-0.32Fe-0.15Cr-0.97Nb合金(Zr合金)经580 ℃退火5 h后的TEM和SEM像
图2  Zr合金中第二相颗粒尺寸的分布
图3  Zr合金中第二相尺寸与成分中Nb/Fe和Nb/Zr原子比之间的关系
图4  Zr合金中Nb/Zr比不同的第二相粒子的TEM像和SAED谱
图5  Zr合金经300 ℃, 8 MPa去离子水短时腐蚀后的TEM像和SAED谱
图6  Zr合金中Nb/Zr比不同的第二相粒子氧化后的TEM像和SAED谱
[1] Kruger R M, Adamson R B, Brenner S S. J Nucl Mater, 1992; 189: 193
[2] Zhou B X. Chin J Nucl Sci Eng , 1993; 13(1): 51
[2] (周邦新. 核材料科学与工程, 1993; 13(1): 51)
[3] Rudling P, Wikmark G, Lehtinen B, Pettersson H. In: George P S, Gerry D M eds., Zirconium in the Nuclear Industry, Twelfth Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 678
[4] Garzarolli F, Ruhmann H, Van S L. In: Gerry D M, Peter R eds., Zirconium in the Nuclear Industry, Thirteenth Symposium, ASTM STP 1423, West Conshohocken: ASTM International, 2002: 119
[5] Goll W, Ray I. In: Gerry D M, Peter R eds., Zirconium in the Nuclear Industry, Thirteenth Symposium, ASTM STP 1423, West Conshohocken: ASTM International, 2002: 80
[6] Jeong Y H, Kim H G, Kim T H. J Nucl Mater, 2003; 317: 1
[7] Kim H G, Park J Y, Jeong Y H. J Nucl Mater, 2005; 345: 1
[8] Lin Y P, Woo O T. J Nucl Mater, 2000; 277: 11
[9] Kim H G, Choi B K, Park J Y, Cho H D, Jeong Y H. J Alloys Compd, 2009; 481: 867
[10] Park T Y, Yoo S J, Choi B K, Jeong Y H. J Alloys Compd, 2007; 437: 274
[11] Cao X X, Yao M Y, Peng J C, Zhou B X. Acta Metall Sin, 2011; 47: 882
[11] (曹潇潇, 姚美意, 彭剑超, 周邦新. 金属学报, 2011; 47: 882)
[12] Wang J H, Wang R S, Weng L K, Zhang Y W, Geng J Q. Acta Metall Sin, 2011; 47: 1200
[12] (王锦红, 王荣山, 翁立奎, 张晏玮, 耿建桥. 金属学报, 2011; 47: 1200)
[13] Krasevec V. J Nucl Mater, 1981; 98: 235
[14] Kuwae R, Sato K, Higashinakagawa E, Kawashima J, Nakamura S I. J Nucl Mater, 1983; 119: 229
[15] Meng X Y, Northwood D O. J Nucl Mater, 1985; 132: 80
[16] Meng X Y, Northwood D O. J Nucl Mater, 1985; 136: 83
[17] Granovsky M S, Canay M, Lena E, Arias D. J Nucl Mater, 2002; 302: 1
[18] Ramos C, Saragovi C, Granovsky M S. J Nucl Mater, 2007; 366: 198
[19] Canay M, Danon C A, Arias D. J Nucl Mater, 2000; 280: 365
[20] Zhou B X, Li C, Huang D C. Nucl Power Eng, 1993; 14(2): 149
[20] (周邦新, 李 聪, 黄德诚. 核动力工程, 1993; 14(2): 149)
[21] Eucken C M, Finden P T, Trapp-Pritsching S, Weidinger H G. In: Van Swam L F P, Eucken C M eds., Zirconium in the Nuclear Industry, Eighth Symposium, ASTM STP 1023, West Conshohocken: ASTM International, 1989: 113
[22] Veersaci R, Ipohorski M. J Nucl Mater, 1983; 116: 321
[23] Shishov V N, Pereguo M M, Nikulina A V, Pimenov Y V, KobylyanskyY G P, Novoselov A E, Ostrovsky Z E, Obukhov A V. In: Peter R, Bruce K eds., Zirconium in the Nuclear Industry, Fourteenth Symposium, ASTM STP 1467, West Conshohocken: ASTM International, 2005: 666
[24] Shishov V N, Pereguo M M, Nikulina A V, Kon′kov V F, Novikov V V, Markelov V A, Khokhunova T N, Kobylyansky Y G P, Novoselov A E, Ostrovsky Z E, Obukhov A V. In: Bruce K, Magnus L eds., Zirconium in the Nuclear Industry, Fifteenth Symposium, ASTM STP 1505, West Conshohocken: ASTM International, 2009: 724
[25] Kim H G, Park J Y, Jeong Y H. J Nucl Mater, 2005; 345: 1
[26] Mardon J P, Charquet D, Senevat J. In: George P S, Gerry D M eds., Zirconium in the Nuclear Industry, Twelfth Symposium, ASTM STP 1354, West Conshohocken: ASTM International, 2000: 505
[1] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[2] 黄鼎, 乔岩欣, 杨兰兰, 王金龙, 陈明辉, 朱圣龙, 王福会. 基体表面喷丸处理对纳米晶涂层循环氧化行为的影响[J]. 金属学报, 2023, 59(5): 668-678.
[3] 刘来娣, 丁彪, 任维丽, 钟云波, 王晖, 王秋良. DZ445镍基高温合金高温长时间氧化形成的多层膜结构[J]. 金属学报, 2023, 59(3): 387-398.
[4] 沈朝, 王志鹏, 胡波, 李德江, 曾小勤, 丁文江. 镁合金抗高温氧化机理研究进展[J]. 金属学报, 2023, 59(3): 371-386.
[5] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[6] 李昕, 江河, 姚志浩, 董建新. O原子对高温合金基体NiCoNiCr晶界作用的理论计算分析[J]. 金属学报, 2023, 59(2): 309-318.
[7] 徐文国, 郝文江, 李应举, 赵庆彬, 卢炳聿, 郭和一, 刘天宇, 冯小辉, 杨院生. 微量AlTiInconel 690合金高温氧化行为的影响[J]. 金属学报, 2023, 59(12): 1547-1558.
[8] 芮祥, 李艳芬, 张家榕, 王旗涛, 严伟, 单以银. 新型纳米复合强化9Cr-ODS钢的设计、组织与力学性能[J]. 金属学报, 2023, 59(12): 1590-1602.
[9] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] 胡敏, 周生玉, 国京元, 胡明昊, 李冲, 李会军, 王祖敏, 刘永长. 多相Ni3Al基高温合金微区氧化行为[J]. 金属学报, 2023, 59(10): 1346-1354.
[11] 丛鸿达, 王金龙, 王成, 宁珅, 高若恒, 杜瑶, 陈明辉, 朱圣龙, 王福会. 新型无机硅酸盐复合涂层制备及其在高温水蒸气环境的氧化行为[J]. 金属学报, 2022, 58(8): 1083-1092.
[12] 解磊鹏, 孙文瑶, 陈明辉, 王金龙, 王福会. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002.
[13] 孙蓉蓉, 姚美意, 林晓冬, 张文怀, 仇云龙, 胡丽娟, 谢耀平, 杨健, 董建新, 成国光. 添加TiFe22Cr5Al3Mo合金在500℃过热蒸汽中腐蚀行为的影响[J]. 金属学报, 2022, 58(5): 610-622.
[14] 赵晓峰, 李玲, 张晗, 陆杰. 热障涂层高熵合金粘结层材料研究进展[J]. 金属学报, 2022, 58(4): 503-512.
[15] 苏凯新, 张继旺, 张艳斌, 闫涛, 李行, 纪东东. 微弧氧化6082-T6铝合金的高周疲劳性能及残余应力松弛机理[J]. 金属学报, 2022, 58(3): 334-344.