Please wait a minute...
金属学报  2015, Vol. 51 Issue (1): 121-128    DOI: 10.11900/0412.1961.2014.00369
  本期目录 | 过刊浏览 |
面向晶粒尺寸的超声多尺度衰减评价方法
李雄兵1,2(), 宋永锋1, 倪培君3, 刘锋2
1 中南大学CAD/CAM研究所, 长沙 410075
2 中南大学粉末冶金国家重点实验室, 长沙410083
3 中国兵器科学研究院宁波分院, 宁波 315103
ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION
LI Xiongbing1,2(), SONG Yongfeng1, NI Peijun3, LIU Feng2
1 CAD/CAM Institute, Central South University, Changsha 410075
2 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083
3 The Ningbo Branch of Ordnance Science Institute of China, Ningbo 315103
引用本文:

李雄兵, 宋永锋, 倪培君, 刘锋. 面向晶粒尺寸的超声多尺度衰减评价方法[J]. 金属学报, 2015, 51(1): 121-128.
Xiongbing LI, Yongfeng SONG, Peijun NI, Feng LIU. ULTRASONIC EVALUATION METHOD FOR GRAIN SIZE BASED ON MULTI-SCALE ATTENUATION[J]. Acta Metall Sin, 2015, 51(1): 121-128.

全文: PDF(3629 KB)   HTML
摘要: 

用小波变换获取超声波能量的时间-尺度分布, 研究衰减系数随尺度的分布规律, 定义加权的超声多尺度衰减系数, 结合粒子群算法设计的最优尺度组合及其归一化权重分配策略, 建立晶粒尺寸的超声多尺度衰减评价模型. 选用304不锈钢进行实验, 其衰减系数-尺度分布图表明超声波在小尺度下衰减迅速, 体现了高散射材料中衰减的频率特征; 而随着试样晶粒尺寸增大, 整个尺度范围内的衰减都明显加剧. 实验结果显示, 声速法、传统衰减法与本方法的最大系统误差分别是+12.57%, +5.85%和-1.33%. 对金相法测得平均晶粒尺寸为103.5 mm的验证试样用3种方法进行评价, 结果分别为(110.4±7.8), (98.2±6.6)和(101.7±3.9) mm. 本方法不仅可降低系统误差, 且随机误差也被小波变换的恒Q滤波特性有效抑制.

关键词 晶粒尺寸超声无损评价多尺度分析衰减系数    
Abstract

To solve such problems as sensitivity to noise and low accuracy of grain size evaluation using traditional ultrasonic time-domain attenuation method, an ultrasonic nondestructive evaluation model based on multi-scale attenuation coefficient was proposed. The distribution of time-scale of ultrasonic energy was obtained by means of wavelet transformation, then to calculate the distribution of attenuation coefficient with scale, and to make a comprehensive analysis of attenuation characteristics of various scales. After the weighted multi-scale ultrasonic attenuation coefficient was defined, a multi-scale ultrasonic attenuation evaluation model was established on the basis of combination of optimal dimension and normalized weight distribution strategy designed by particle swarm optimization. 304 stainless steel was used in the test. The distribution of attenuation coefficient with scale shows that ultrasonic wave of small scales attenuates fast, presenting the frequency characteristics of ultrasonic attenuation among high scattering materials. Following increase of the sample grain size, ultrasonic attenuation of all scales was intensified significantly. Test results show that the sound velocity method, the traditional evaluation method and the proposed method have maximum systematic errors of +12.57%, +5.85% and -1.33%, respectively. With these 3 methods, evaluation results of the sample with a mean grain size of 103.5 mm measured by metallographic method are (110.4±7.8), (98.2±6.6) and (101.7±3.9) mm, respectively, showing that the presented method can not only reduce the systemic error, but also can effectively control the random error by constant Q filtering properties of wavelet transformation. This model can be extended to grain size evaluation of other metals.

Key wordsgrain size    ultrasonic nondestructive evaluation    multi-scale analysis    attenuation coefficient
    
ZTFLH:  TG115.21  
基金资助:* 国家自然科学基金项目61271356, 51205031和51105045, 国家高技术研究发展计划项目2012AA03A514, 湖南省自然科学基金项目14JJ2002及中国博士后科学基金项目2014M562126资助
作者简介: null

李雄兵, 男, 1977年生, 副教授

Sample
No.
Heating temperature
Holding time / h Cooling method Sample thickness / mm D / mm E / %
1 1080 2 W.Q. 14.621 72.4 2.23
2 1080 4 W.Q. 14.236 82.5 3.06
3 1080 6 W.Q. 13.762 90.6 4.49
4 1080 8 W.Q. 13.546 105.6 4.06
5 1180 6 W.Q. 13.447 135.4 1.65
6 1180 8 W.Q. 12.847 141.9 2.39
表1  各试样的热处理规范、厚度与平均晶粒尺寸
图1  超声信号采集系统示意图
图2  各试样的金相图
图3  No.2试样的一组原始超声信号及其表面波与底面波
图4  传统衰减法的评价模型
图5  No.2试样的表面波和底波时间-尺度分布图
图6  各试样在所有尺度下的平均衰减系数谱图
图7  多尺度衰减评价模型
图8  不同方法的评价结果及误差带
Sample
No.
D v / mm E v / % D t / mm E t / % D m / mm E m / %
1 81.5±5.7 12.57 72.9±2.9 0.69 72.7±1.9 0.41
2 83.6±8.5 1.33 81.2±3.5 -1.58 82.3±2.8 -0.24
3 85.5±10.6 -5.63 95.9±4.1 5.85 91.7±4.0 1.21
4 98.2±8.3 -7.01 102.0±4.5 -3.41 104.2±4.4 -1.33
5 135.7±9.0 0.22 131.5±5.7 -2.88 134.3±2.7 -0.81
6 143.9±10.1 1.41 145.0±6.5 2.18 143.3±3.5 0.99
表2  不同方法的性能对比分析
  
[1] Prasad K S, Rao C S, Rao D N. Acta Metall Sin (Engl Lett), 2012; 25: 179
[2] Wang S H, Liu Z Y, Wang G D. Acta Metall Sin, 2009; 45: 61
[2] (王书晗, 刘振宇, 王国栋. 金属学报, 2009; 45: 61)
[3] Zhao Y, Chen Z, Long J, Yang T. Acta Metall Sin (Engl Lett), 2014; 27: 81
[4] Lehto P, Remes H, Saukkonen T, Hänninen H, Romanoff J. Mater Sci Eng, 2014; A592: 28
[5] Andrés R, Galvis E, Hormaza W. Eng Fail Anal, 2011; 18: 1791
[6] Voort G F V. Prakt Metall, 2013; 50: 239
[7] Schwartz A J, Kumar M, Adams B L, Field D P. Electron Backscatter Diffraction in Materials Science. New York: Springer, 2009: 1
[8] Sabbagh E H, Sabbagh H A, Murphy R K, Sheila-Vadde A, Blodgett M P, Knopp J, Aldrin J C. In: Thompson D O, Chimenti D E eds., Review of Progress in Quantitative Nondestructive Evaluation, New York: American Institute of Physics, 2009: 742
[9] Guo Y, Thompson R B, Margetan F J. In: Thompson D O, Chimenti D E, eds., Review of Progress in Quantitative Nondestructive Evaluation, New York: American Institute of Physics, 2003: 1347
[10] Panetta P D, Bland L G, Tracy M, Hassan W. In: The Minerals, Metals & Materials Society (TMS) ed., TMS2014 Annual Meeting Supplemental Proceedings, Hoboken: John Wiley & Sons Inc, 2014: 721
[11] Ünal R, Sarpün I H, Yalım H A, Erol A, Özdemir T, Tuncel S. Mater Charact, 2006; 56: 241
[12] Zuev L B, Semukhin B S, Zarikovskaya N V. Int J Solids Struct, 2003; 40: 941
[13] Laux D, Cros B, Despaux G, Baron D. J Nucl Mater, 2002; 300: 192
[14] Aghaie-Khafri M, Honarvar F, Zanganeh S. J Nondestruct Eval, 2012; 31: 191
[15] Őzkan V, Sarpünb I H. Acta Phys Pol, 2012; 121A: 184
[16] Zeng F, Agnew S R, Raeisinia B, Myneni G R. J Nondestruct Eval, 2010; 29: 93
[17] Kumar A, Jayakumar T, Palanichamy P, Raj B. Scr Mater, 1999; 40: 333
[18] Sharma G K, Kumar A, Babu Rao C, Jayakumar T, Raj B. NDT&E Int, 2013; 53: 1
[19] Dong J K. Heat Treat Met, 2011; 36: 133
[19] (董加坤. 金属热处理, 2011; 36: 133)
[20] Eberhart R C, Shi Y. In: Zalzala A ed., IEEE Proceedings of the Congress Evolutionary Computation, New York: IEEE, 2000: 84
[21] Le T P, Argoul P. J Sound Vib, 2004; 277: 73
[1] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[2] 原家华, 张秋红, 王金亮, 王灵禺, 王晨充, 徐伟. 磁场与晶粒尺寸协同作用对马氏体形核及变体选择的影响[J]. 金属学报, 2022, 58(12): 1570-1580.
[3] 李晓倩, 王富国, 梁爱民. 喷涂工艺对Ta2O5原位复合钽基纳米晶涂层微观结构及摩擦磨损性能的影响[J]. 金属学报, 2021, 57(2): 237-246.
[4] 张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
[5] 许占一, 沙玉辉, 张芳, 章华兵, 李国保, 储双杰, 左良. 取向硅钢二次再结晶过程中的取向选择行为[J]. 金属学报, 2020, 56(8): 1067-1074.
[6] 和淑文, 王鸣华, 白琴, 夏爽, 周邦新. WC-TiC-TaC-Co硬质合金中TaC含量对其显微组织和力学性能的影响[J]. 金属学报, 2020, 56(7): 1015-1024.
[7] 华涵钰,谢君,舒德龙,侯桂臣,盛乃成,于金江,崔传勇,孙晓峰,周亦胄. W含量对一种高W镍基高温合金显微组织的影响[J]. 金属学报, 2020, 56(2): 161-170.
[8] 李鑫,董月成,淡振华,常辉,方志刚,郭艳华. 等通道角挤压制备超细晶纯Ti的腐蚀性能研究[J]. 金属学报, 2019, 55(8): 967-975.
[9] 梅益, 孙全龙, 喻丽华, 王传荣, 肖华强. 基于GA-ELM的铝合金压铸件晶粒尺寸预测[J]. 金属学报, 2017, 53(9): 1125-1132.
[10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477.
[11] 付全,沙玉辉,和正华,雷蕃,张芳,左良. Fe81Ga19二元合金薄板的再结晶织构与磁致伸缩性能[J]. 金属学报, 2017, 53(1): 90-96.
[12] 宋永锋, 李雄兵, 吴海平, 司家勇, 韩晓芹. In718晶粒尺寸对超声背散射信号的影响及其无损评价方法*[J]. 金属学报, 2016, 52(3): 378-384.
[13] 刘觐,朱国辉. 超细晶粒钢中晶粒尺寸对塑性的影响模型*[J]. 金属学报, 2015, 51(7): 777-783.
[14] 赵清,夏爽,周邦新,白琴,苏诚,王宝顺,蔡志刚. 形变及热处理对825合金管材晶界特征分布的影响*[J]. 金属学报, 2015, 51(12): 1465-1471.
[15] 侯丹辉, 梁松茂, 陈荣石, 董闯. 砂型铸造Mg-6Al-xZn合金凝固行为及晶粒尺寸*[J]. 金属学报, 2014, 50(5): 601-609.