大尺寸密闭空间内甲烷-空气二元混合方法的改进与评定

樊保龙 李斌 白春华 王博

樊保龙, 李斌, 白春华, 王博. 大尺寸密闭空间内甲烷-空气二元混合方法的改进与评定[J]. 高压物理学报, 2016, 30(3): 242-248. doi: 10.11858/gywlxb.2016.03.010
引用本文: 樊保龙, 李斌, 白春华, 王博. 大尺寸密闭空间内甲烷-空气二元混合方法的改进与评定[J]. 高压物理学报, 2016, 30(3): 242-248. doi: 10.11858/gywlxb.2016.03.010
FAN Bao-Long, LI Bin, BAI Chun-Hua, WANG Bo. Improvement and Evaluation on Binary Mixing Method of Methane and Air in Large-Scale Confined Space[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 242-248. doi: 10.11858/gywlxb.2016.03.010
Citation: FAN Bao-Long, LI Bin, BAI Chun-Hua, WANG Bo. Improvement and Evaluation on Binary Mixing Method of Methane and Air in Large-Scale Confined Space[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 242-248. doi: 10.11858/gywlxb.2016.03.010

大尺寸密闭空间内甲烷-空气二元混合方法的改进与评定

doi: 10.11858/gywlxb.2016.03.010
基金项目: 

中国博士后科学基金 2013M530535

详细信息
    作者简介:

    樊保龙(1980—),男,博士,主要从事气体爆炸研究.E-mail:fanbaolong6717@163.com

    通讯作者:

    李斌(1984—),男,博士,主要从事多相爆轰研究.E-mail:wrilber@gmail.com

  • 中图分类号: X932; O38

Improvement and Evaluation on Binary Mixing Method of Methane and Air in Large-Scale Confined Space

  • 摘要: 气体混合过程在工业生产和科学研究领域是一个值得关注的课题。以大尺寸爆炸罐内的气体爆炸研究为背景,基于已有的10 m3爆炸罐的基本结构,设计并建立了适用于爆炸罐结构的进气装置,并以此为基础,研究了甲烷和空气在大尺寸密闭空间内的混合过程。根据气体混合效果的评判标准,通过实验确定了适用于爆炸罐的进气装置的具体尺寸参数及相关进气条件,并与未改进前的气体混合过程进行对比。结果表明:采用直管螺旋开孔的进气装置后,当开孔孔径为1.5 mm、孔间距为100 mm时,气体混合效果最好;当进气速率保持在8 m3/h、进气前罐体内外压差为0.04 MPa时,气体混合效果可以进一步优化。经改进之后,爆炸罐内的气体混合时间缩短为原来的1/12,且罐体内气体混合物的均匀度更高,满足气体爆炸实验的要求。此结果亦可为其他大尺寸密闭容器或空间的气体混合过程提供参考数据。

     

  • 图  爆炸罐结构图

    Figure  1.  Structural sketch of the blasting vessel

    1. Blasting vessel; 2.Measuring holes; 3.Door; 4.Ignition pole; 5.Observation windows; 6.Dust spraying system; 7.Data measuring system; 8.Controlling system; 9.Ignition device; 10.Gas supply system; 11.Ventilating system; 12.Vacuum pump; 13.High pressure gas pump

    图  进气装置结构示意图

    Figure  2.  Structure of the gas-intake device

    图  中心采样点气体浓度随时间变化曲线图

    Figure  3.  Gas concentration versus time of central observation point

    图  改进前后混气效果的对比

    Figure  4.  Comparison of mixing effects in initial and optimal conditions

    表  1  不同开孔直径条件下的混气效果(孔间距100 mm)

    Table  1.   Mixing effect of different hole diameters (separation distance:100 mm)

    Diameter/(mm) Final mixing duration/(min) Maximum concentration difference/(%) Dead zone proportion/(%) Rich zone proportion/(%) Mixing ratio/(%)
    1.5 - 45 25.0 0 4.25
    2.0 - 43 25.0 0 3.67
    2.5 - 80 25.0 37.5 11.60
    3.0 - 67 37.5 12.5 8.71
    3.5 - 100 25.0 62.5 23.45
    下载: 导出CSV

    表  2  不同开孔间距条件下的混气效果(孔径1.5 mm)

    Table  2.   Mixing effect of different separation distances (hole diameter:1.5 mm)

    Separationdistance/(mm) Final mixing duration/(min) Maximum concentration difference/(%) Dead zone proportion/(%) Rich zone proportion/(%) Mixing ratio/(%)
    50 - 50 12.5 75.0 6.75
    100 - 22 12.5 0 1.36
    150 - 22 0 62.5 5.88
    200 - 40 0 62.5 3.97
    250 - 40 0 87.5 12.32
    下载: 导出CSV

    表  3  不同进气速度下的混气效果(真空度0.04 MPa)

    Table  3.   Mixing effect of different gas-intake velocities (vacuum:0.04 MPa)

    Velocity/(m3/h) Final mixing duration/(min) Maximum concentration difference/(%) Dead zone proportion/(%) Rich zone proportion/(%) Mixing ratio/(%)
    2 - 31 0 75 6.65
    4 - 18 37.5 0 4.46
    6 - 20 25.0 0 2.36
    8 42 22 12.5 0 1.36
    10 40 20 0 0 1.00
    下载: 导出CSV

    表  4  不同初始真空度下的混气效果(进气速率8 m3/h)

    Table  4.   Mixing effect of different vacuums (gas-intake velocity:8 m3/h)

    Vacuum/(MPa) Final mixing duration/(min) Maximum concentration difference/(%) Dead zone proportion/(%) Rich zone proportion/(%) Mixing ratio/(%)
    0.02 31 20 0 0 0.74
    0.03 - 18 0 0 0.67
    0.04 27 22 0 0 0.73
    0.05 - 32 12.5 0 2.07
    0.06 - 20 37.5 0 2.72
    下载: 导出CSV
  • [1] 周心权, 陈国新.煤矿重大瓦斯爆炸事故致因的概率分析及启示[J].煤炭学报, 2008, 33(1):42-46. doi: 10.3321/j.issn:0253-9993.2008.01.009

    ZHOU X Q, CHEN G X.The probability analysis of occurrence causes of extraordinarily serious gas explosion accidences and its revelation[J].Journal of China Coal Society, 2008, 33(1):42-46. doi: 10.3321/j.issn:0253-9993.2008.01.009
    [2] 王华, 邓军, 葛岭梅.初始压力对矿井可燃性气体爆炸特性的影响[J].煤炭学报, 2011, 36(3):423-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100257145

    WANG H, DENG J, GE L M.Influence of initial pressure on explosion characteristics of flammable gases in coal mine[J].Journal of China Coal Society, 2011, 36(3):423-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201100257145
    [3] 王志荣, 蒋军成, 周超.连通装置气体爆炸特性实验[J].爆炸与冲击, 2011, 31(1):69-74. http://d.old.wanfangdata.com.cn/Periodical/bzycj201101012

    WANG Z R, JIANG J C, ZHOU C.Experimental investigation of gas explosion characteristic in linked vessels[J].Explosion and Shock Wave, 2011, 31(1):69-74. http://d.old.wanfangdata.com.cn/Periodical/bzycj201101012
    [4] 王海燕, 曹涛, 周心权, 等.煤矿瓦斯爆炸冲击波衰减规律研究与应用[J].煤炭学报, 2009, 34(6):778-782. doi: 10.3321/j.issn:0253-9993.2009.06.012

    WANG H Y, CAO T, ZHOU X Q, et al.Research and application of attenuation law about gas explosion shock wave in coal mine[J].Journal of China Coal Society, 2009, 34(6):778-782. doi: 10.3321/j.issn:0253-9993.2009.06.012
    [5] SARLI V D, BENEDETTO A D, RUSSO G.Using Large eddy simulation for understanding vented gas explosions in the presence of obstacles[J].J Hazard Mater, 2008, 169:435-442. http://www.sciencedirect.com/science/article/pii/S0304389409005172
    [6] KINDRACKI J, KOBIERA A, RARATA G.Influence of ignition position and obstacles on explosion development in methane-air mixture in closed vessels[J].J Loss Prevent Proc, 2007, 20:551-561. doi: 10.1016/j.jlp.2007.05.010
    [7] 白志刚, 杨晨.循环流化床气固两相流动模拟[J].计算机仿真, 2009, 26(3):272-275. doi: 10.3969/j.issn.1006-9348.2009.03.071

    BAI Z G, YANG C.Numerical simulation of gas-solid flow in CFB[J].Computer Simulation, 2009, 26(3):272-275. doi: 10.3969/j.issn.1006-9348.2009.03.071
    [8] 晁东海, 郭雪岩.大颗粒气固流化床内两相流动的CFD模拟[J].上海理工大学学报, 2010, 32(4):333-339. doi: 10.3969/j.issn.1007-6735.2010.04.007

    CHAO D H, GUO X Y.CFD simulation on two-phase flow in gas-solid fluidized beds with coarse granules[J].University of Shanghai for Science and Technology, 2010, 32(4):333-339. doi: 10.3969/j.issn.1007-6735.2010.04.007
    [9] STERNÉUS J, JOHNSSON P, LECKNER B.Gas mixing in circulating fluidised-bed risers[J].Chem Eng Sci, 2000, 55(1):129-148. doi: 10.1016/S0009-2509(99)00280-8
    [10] KOKSAL M, HAMDULLAHPUR F.Gas mixing in circulating fluidized beds with secondary air injection[J].Chem Eng Res Des, 2004, 82(8):979-992. doi: 10.1205/cerd.82.8.979.41546
    [11] GONG M Q, LUO E C, WU J F.The mixing effects for real gases and their mixtures[J].Cryogenics, 2004, 44(10):741-753. doi: 10.1016/j.cryogenics.2004.04.007
    [12] HAAS-SANTO K, PFEIFER P, SCHUBERT K, et al.Experimental evaluation of gas mixing with a static microstructure mixer[J].Chem Eng Sci, 2005, 60(11):2955-2962. doi: 10.1016/j.ces.2005.01.015
    [13] JAFARI M, SOLTAN MOHAMMADZADEH J S.Mixing time, homogenization energy and residence time distribution in a gas-induced contactor[J].Chem Eng Res Des, 2005, 83(5):452-459. doi: 10.1205/cherd.04207
    [14] RIESCO N, MASON G, CUMMING I W, et al.Measurement of gas mixing volumes by flux response technology[J].Fluid Phase Equilibr, 2007, 256(1/2):93-98. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=318462f895fbdc5048949316567ae441
    [15] GOURARA A, ROGER F, WANG H Y, et al.Prediction of ignition hazard during turbulent gas mixing:A Lagrangian approach[J].J Loss Prevent Proc, 2004, 17(1):35-41. doi: 10.1016/j.jlp.2003.09.003
    [16] ZAHMATKESH I, EMDAD H, ALISHAHI M M.Two-fluid analysis of a gas mixing problem[J].Scientia Iranica B, 2013, 20(1):162-171. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0212525650
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  6061
  • HTML全文浏览量:  2436
  • PDF下载量:  185
出版历程
  • 收稿日期:  2014-06-10
  • 修回日期:  2014-08-15

目录

    /

    返回文章
    返回