Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-18T23:43:26.665Z Has data issue: false hasContentIssue false

Dzierżanowskite, CaCu2S2 – a new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel

Published online by Cambridge University Press:  02 January 2018

Irina O. Galuskina*
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Evgeny V. Galuskin
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Krystian Prusik
Affiliation:
Institute of Materials Science, University of Silesia, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
Rafał Juroszek
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Lidia Jeżak
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
Mikhail Murashko
Affiliation:
Saint Petersburg State University, Faculty of Geology, 7-9 Universitetskaya nab., St. Petersburg, 199034, Russia

Abstract

Dzierżanowskite, , a thiocuprate, was found in larnite pseudoconglomerate rocks of the Hatrurim Complex at Jabel Harmun, Palestinian Autonomy, Israel. Dzierżanowskite occurs in larnite pebbles, which are embedded in a low-temperature mineral matrix. Associated minerals are larnite, brownmillerite, fluorellestadite, ye'elimite, gehlenite, periclase, ternesite, nabimusaite, vorlanite, vapnikite, fluormayenite, fluorkyuygenite, oldhamite, jasmundite, covellite, chalcocite and pyrrhotite. Electron microprobe analyses yield an average composition of Cu 55.25, Fe 0.13, S 27.46 and Ca 16.99, total 99.83 wt.%. The empirical formula of dzierżanowskite, based on 5 atoms, is Ca0.98Cu2.02Fe0.01S1.99. Dzierżanowskite forms grains up to 15 μm in size or rims on oldhamite and laminar intergrowths with chalcocite and covellite. Dzierżanowskite is dark orange, has a cream streak and a submetallic lustre. In reflected light it is grey, with a cream tint and characteristic yellow-orange internal reflections. The calculated density of dzierżanowskite is 4.391 g cm -3. Three bands at 300, 103 and 86 cm -1 are observed in the Raman spectrum. The strongest lines of the calculated powder diffraction pattern are [d, Å (I) hkl]: 2.358(100) 102, 1.970(93)110, 3.023(78) 011, 6.523(36) 001, 3.412 (28) 100, 1.834(28) 103. Dzierżanowskite was also found in unusual jasmundite rocks, forming small ‘paleofumaroles’ within areas of low-temperature hydrothermal rocks bearing larnite pseudoconglomerates at Jabel Harmun. Dzierżanowskite is a superimposed phase of the high-temperature alteration of pyrometamorphic rocks subjected to by-products (melts/fluids and gases) of pyrometamorphism originating in the deeper levels of combustion.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bentor, Y.K. (editor) (1960) Israel. In: Lexique Stratigraphique International, Asie, Vol. III, (10.2). Centre national de la recherche scientifique, Paris.Google Scholar
Boller, H. (2007) Thiocuprates – interesting anisotropic solids. Journal of Alloys and Compounds, 442, 310.CrossRefGoogle Scholar
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Burg, A., Kolodny, Y. and Lyakhovsky, V. (1999) Hatrurim-2000: The “Mottled Zone” revisited, forty years later. Israel Journal of Earth Sciences, 48, 209223.Google Scholar
Condron, C.L., Hope, H., Piccoli, P.M.B., Schultz, A.J. and Kauzlarich, S.M. (2007) Synthesis, structure, and properties of BaAl2Si2 . Inorganic Chemistry, 46, 45234529.CrossRefGoogle ScholarPubMed
Day, A. and Trimby, P. (2004) Channel 5 Manual. HKL Technology Inc., Hobro, Denmark.Google Scholar
Galuskin, E., Galuskina, I., Kusz, J., Armbruster, T., Marzec, K., Dzierżanowski, P. and Murashko, M. (2014) Vapnikite Ca3UO6 – a new double perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestine Autonomy, Israel. Mineralogical Magazine, 78, 571581.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., Włodyka, R. and Dzierżanowski, P. (2015a) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Sharygin, V.V., Galuskina, I.O., Krivovichev, S.V., Vapnik, Y., Murashko, M., Dzierżanowski, P. and Wirth, R. (2015b) Mayenite supergroup, part III: Fluormayenite, Ca12Al14O32[□4F2], and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rocks of the Hatrurim Complex, South Levant. European Journal of Mineralogy, 27, 123136.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, Y., Dulski, M. and Dzierżanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105–12.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Krzątała, A., Vapnik, Ye., Kusz, J., Dulski, M., Gardocki, M., Gurbanov, A.G. and Dzierżanowski, P. (2017) New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks, Part III: Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and Palestine Autonomy, South Levant and from South Ossetia, Greater Caucasus. Mineralogical Magazine, 81, 499513.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun,West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Gfeller, F., Galuskina, I.O., Galuskin, E.V., Armbruster, T., Vapnik, Y., Dulski, M., Gardocki, M., Jeżak, L. and Murashko, M. (2015a) Dargaite, IMA2015-068. CNMNC Newsletter No. 28, December 2015, page 1860; Mineralogical Magazine, 79, 18591864.Google Scholar
Gfeller, F., Widmer, R., Krüger, B., Galuskin, E.V., Galuskina, I.O. and Armbruster, T. (2015b) The crystal structure of flamite and its relation to Ca2SiO4 polymorphs and nagelschmidtite. European Journal of Mineralogy, 27, 755769.CrossRefGoogle Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70.Google Scholar
Kachalovskaya, V.M., Osipov, B.S., Nazarenko, N.G., Kukoev, V.A., Mazmanyan, A.O., Egorov, I.N. and Kaplunnik, L.N. (1988) Chvilevaite – a new alkali sulfide with the composition Na(Cu,Fe,Zn)2S2 . Zapiski VMO, 117(2), 204207.Google Scholar
Kaplunnik, L.N., Petrova, I.V., Pobedimskaya, E.A., Kachalovskaya, V.M. and Osipov, B.S. (1990) Crystal structure of natural alkaline sulfide chvilevaite Na(Cu,Fe,Zn)2S2 . Soviet Physics Doklady, 35, 68.Google Scholar
Kolodny, Y. and Gross, S. (1974) Thermal metamorphism by combustion of organic matter: isotope and petrological evidences. Journal of Geology, 82, 489506.CrossRefGoogle Scholar
Mizutani, Y. (1970) Copper and zinc in fumarolic gases of Showashinzan volcano, Hokkaido, Japan. Geochemical Journal, 4, 8791.CrossRefGoogle Scholar
Novikov, I., Vapnik, Y. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Picard, L. (1931) Geological Research in the Judean Desert. Goldberg Press, Jerusalem.Google Scholar
Purdy, A.P. (1998) Ammonothermal crystal growth of sulfide materials. Chemistry of Materials, 10, 692694.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Vapnik, Y. and Sharygin, V.V. (2007) Gas fire frommud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady Earth Sciences, 413A, 474480.CrossRefGoogle Scholar
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Y., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphism in the Nabi Musa dome: new implications for a mud volcanic origin of the Mottled Zone, Dead Sea area. Basin Research, 22, 414438.CrossRefGoogle Scholar
Sokol, E.V., Kokh, S.N., Vapnik, Y., Thiéry, V. and Korzhova, S.A. (2014) Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert, Israel. American Mineralogist, 99, 14711487.CrossRefGoogle Scholar
Sokol, E.V., Seryotkin, Y.V., Kokh, S.N., Vapnik, Y., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V. and Sharygin, V.V. (2015) Flamite, (Ca,Na,K)2(Si,P) O4, a new mineral from ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 583596.CrossRefGoogle Scholar
Suárez-Ruiz, I., Flores, D., Filho, J.G.M. and Hackley, P. C. (2012) Review and update of the applications of organic petrology: Part 2, geological and multidisciplinary applications. International Journal of Coal Geology, 98, 7394.CrossRefGoogle Scholar
Symonds, R. (1993) Scanning electron microscope observation of sublimates from Merapi volcano, Indonesia. Geochemical Journal, 26, 337350.CrossRefGoogle Scholar
Taylor, H.F.W (1997) Cement Chemistry. Thomas Telford Publishing, London.CrossRefGoogle Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Westmoreland, P.R., Gibson, J.B. and Harrison, D.P. (1977) Comparative kinetics of high-temperature reaction between H2S and selected metal oxides. Environmental Science and Technology, 11, 488491.CrossRefGoogle Scholar