Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T18:24:33.343Z Has data issue: false hasContentIssue false

Ferrostalderite, CuFe2TlAs2S6, a new mineral from Lengenbach, Switzerland: occurrence, crystal structure, and emphasis on the role of iron in sulfosalts

Published online by Cambridge University Press:  02 January 2018

Cristian Biagioni*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, Italy
Luca Bindi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I-50121 Firenze, Italy
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy
Ralph Cannon
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Breite Steine, CH-3996 Binn, Switzerland
Philippe Roth
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Ilanzhofweg 2, CH-8057 Zurich, Switzerland
Thomas Raber
Affiliation:
FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, Germany

Abstract

The new mineral species ferrostalderite, CuFe2TlAs2S6, was discovered in the Lengenbach quarry, Binn Valley, Wallis, Switzerland. It occurs as minute, metallic, black, equant to prismatic crystals, up to 50 mu;m, associated with dolomite, realgar, baumhauerite (?) and pyrite. Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 471.1: 24.2/25.4; 548.3: 23.7/24.7; 586.6: 22.9/23.8; 652.3: 21.0/22.0. Electron microprobe analyses give (wt.%): Cu 6.24(25), Ag 4.18(9), Fe 9.95(83), Zn 4.46(91), Hg 1.22(26), Tl 26.86(62), As 19.05(18), Sb 0.63(6),S 25.39(47), total 97.98(72). On the basis of 12 atoms per formula unit, the chemical formula of ferrostalderite is Cu0.75(2)Ag0.30(1)Fe1.36(10) Zn0.52(11) Hg0.05(1) Tl1.00(1)[As1.94(4)Sb0.04(1)]∑1.98(4)S6.04(4). The new mineral is tetragonal, space group I4̄2 m, with a = 9.8786(5), c = 10.8489(8) Å, V = 1058.71(11) Å3, Z = 4. The main diffraction lines of the calculated powder diagram are [d (in Å), intensity, hkl]: 4.092, 70, 211; 3.493, 23, 220; 3.396, 35, 103; 3.124, 17, 310; 2.937, 100, 222; 2.656, 19, 321; 2.470, 19, 400; 2.435, 33, 303. The crystal structure of ferrostalderite has been refined by Xray single-crystal data to a final R1 = 0.050, on the basis of 1169 reflections with F0 > 4σ(F0). It shows a three dimensional framework of (Cu,Fe)-centred tetrahedra (1M1 + 2 M2), with channels parallel to [001] hosting disymmetric TlS6 and (As,Sb)S3 polyhedra. Ferrostalderite is derived from its isotype stalderite M1CuM2Zn2TlAs2S6 through the homovalent substitution M2Zn2+ → M2Fe2+. The ideal crystal-chemical formula of ferrostalderite is M1CuM2Fe2TlAs2S6.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, J.W., Makovicky, E., Lebech, B. and Karup-Møller, S. (2008) The role of iron in tetrahedrite and tennantite determined by Rietveld refinement of neutron powder diffraction data. Physics and Chemistry of Minerals, 35, 447454 CrossRefGoogle Scholar
Balic-Zunic, T., Makovicky, E., Karanovic, L., Poleti, D. and Graeser, S. (2006) The crystal structure of gabrielite, Tl2AgCu2As3S7, a new species of thallium sulfosalt from Lengenbach, Switzerland. The Canadian Mineralogist, 44, 141158. CrossRefGoogle Scholar
Biagioni, C., D'Orazio, M., Vezzoni, S., Dini, A. and Orlandi, P. (2013) Mobilization of Tl-Hg-As-Sb-(Ag, Cu)-Pb sulfosalt melts during low-grade metamorph-ism in the Alpi Apuane (Tuscany, Italy). Geology, 41, 747–75.CrossRefGoogle Scholar
Biagioni, C., Bonaccorsi, E., Moëlo, Y and Orlandi, P. (2014a) Mercury-arsenic sulfo salts from Apuan Alps (Tuscany, Italy). I. Routhierite, (Cu0 8Ag0 2)Hg2Tl (As1.4Sb0.6)Σ=2S6, from Monte Arsiccio mine: occur¬rence and crystal structure. European Journal of Mineralogy, 26, 163170. CrossRefGoogle Scholar
Biagioni, C., Bonaccorsi, E., Moëlo, Y., Orlandi, P., Bindi, L., D'Orazio, M. and Vezzoni, S. (2014b) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series. Mineralogical Magazine, 78, 101117 CrossRefGoogle Scholar
Bindi, L. (2008) Routhierite, Tl(Cu,Ag)(Hg,Zn)2(As,Sb)2S6 . Acta Crystallographica, C64, i95i96.Google Scholar
Bindi, L. and Menchetti, S. (2005) Garavellite, FeSbBiS4, from the Caspari mine, North Rhine-Westphalia, Germany: composition, physical properties and deter¬mination of the crystal structure. Mineralogy and Petrology, 85, 131139. CrossRefGoogle Scholar
Bindi, L., Downs, R.T., Spry, P.G., Pinch, W.W. and Menchetti, S. (2012) A chemical and structural re-examination of fettelite samples from the type locality, Odenwald, southwest Germany. Mineralogical Magazine, 76,551566 CrossRefGoogle Scholar
Bindi, L., Biagioni, C., Nestola, F., Cannon, R., Roth, P. and Raber, T (2015a) Ferrostalderite, IMA 2014-090. CNMNC Newsletter No. 24, April 2015, page 248. Mineralogical Magazine, 79, 247251 Google Scholar
Bindi, L., Biagioni, C., Raber, T., Roth, P. and Nestola, F. (2015b) Ralphcannonite, AgZn2TlAs2S6, a new mineral of the routhierite isotypic series from Lengenbach, Binn Valley, Switzerland. Mineralogical Magazine, 79, 10891098. CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197. CrossRefGoogle Scholar
Brown, K.L. and Dickson, F.W. (1976) The crystal structure of synthetic christite, HgTlAsS3 . Zeitschrift für Kristallographie, 144,367376 CrossRefGoogle Scholar
Buerger, M.J. and Hahn, T (1955) The crystal structure of berthierite, FeSb2S4 . American Mineralogist, 40, 226238. Google Scholar
Graeser, S., Schwander, H., Wulf, R. and Edenharter, A. (1995) Stalderite, TlCu(Zn,Fe,Hg)2As2S6 - a new mineral related to routhierite: description and crystal structure. Schweizerische Mineralogische und Petrographische Mitteilungen, 75,337345 Google Scholar
Graeser, S., Cannon, R., Drechsler, E., Raber, T and Roth, P. (2008) Faszination Lengenbach Abbau-Forschung-Mineralien 1958-2008. Kristallographik Verlag, Achberg, Germany.Google Scholar
Hofmann, B.A. andKnill, M.D. (1996) Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba mineral¬ization, Binn Valley, Switzerland. Mineralium Deposita, 31, 319339. CrossRefGoogle Scholar
Johan, Z. and Mantienne, J. (2000) Thallium-rich mineralization at Jas Roux, Hautes-Alpes, France: a complex epithermal, sediment-hosted, ore-forming system. Journal of the Czech Geological Society, 45,6377 Google Scholar
Johan, Z., Mantienne, J. and Picot, P. (1974) La routhiérite, TlHgAsS3, et la laffittite, AgHgAsS3, deux nouvelles especes minerales. Bulletin de la Société française de Minéralogie et de Cristallographie, 97, 4853. CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) PowderCell — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303. CrossRefGoogle Scholar
Lemoine, P.P., Carré, D. and Robert, F. (1991) Structure du sulfure de fer et d'antimoine, FeSb2S4 (berthierite). Acta Crystallographica, C47, 938940. Google Scholar
Léone, P., Le Leuch, L.M., Palvadeau, P., Molinie, P. and Moëlo, Y (2003) Single crystal structure and magnetic properties of two iron or manganese-lead-antimony sulfides: MPb4Sb6S14 (M:Fe, Mn). Solid State Sciences, 5, 771776. CrossRefGoogle Scholar
Li, J. (1984) Franckeite syntheses and heating experi-ments. Neues Jahrbuch für Mineralogie, Abhandlungen, 150,4550 Google Scholar
Lukaszewicz, K., Pietraszko, A., Stepien-Damm, J., Kajokas, A., Grigas, J. and Drulis, H. (2001) Crystal structure, Mössbauer spectra, thermal expansion, and phase transition of berthierite, FeSb2S4 . Journal of Solid State Chemistry, 162,7983 CrossRefGoogle Scholar
Makovicky, E., Forcher, K., Lottermoser, W. and Amthauer, G. (1990) The role of Fe2+ and Fe3+ in synthetic Fe-substituted tetrahedrite. Mineralogy and Petrology, 43, 7381. CrossRefGoogle Scholar
Makovicky, E., Petricek, V., Dušek, M. and Topa, D. (2008) Crystal structure of a synthetic tin-selenium representative of the cylindrite structure type. American Mineralogist, 93, 17871798. CrossRefGoogle Scholar
Makovicky, E., Petricek, V., Dušek, M. and Topa, D. (2011) The crystal structure of franckeite, Pb217S119 3Fe4 0Sb8 j S56.9 . American Mineralogist, 96, 16861702. CrossRefGoogle Scholar
Moëlo, Y., Makovicky, E., Mozgova, N.N., Jambor, J.L., Cook, N., Pring., A., Paar, W.H., Nickel, E.H., Graeser, S., Karup-Møller, S., Balic-Zunic, T. Mumme, W.G., Vurro, F., Topa, D., Bindi, L., Bente, K. and Shimizu, M. (2008) Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy. European Journal of Mineralogy, 20,746 CrossRefGoogle Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, UK.Google Scholar
Paar, W.H., Moëlo, Y., Mozgova, N.N., Organova, N.I., Stanley, C.J., Roberts, A.C., Culetto, EX, Effenberger, H.S., Topa, D., Putz, H., Sureda, R.J. and de Brodtkorb, M.K. (2008) Coiraite, (Pb,Sn2+)12.5 As3Fe2+Sn4+ 5 S28: a franckeite-type new mineral from Jujuy Province, NW Argentina. Mineralogical Magazine, 72, 10831101.CrossRefGoogle Scholar
Parasyuk, O.V., Gulay, L.D., Piskach, L.V. and Gagalovska, O.P. (2002) The Ag2S-HgS-GeS2 system at 670 K and the crystal structure of the Ag2HgGeS4 compound. Journal of Alloys and Compounds, 336, 213217.CrossRefGoogle Scholar
Petrova, I.V., Pobedimskaya, E.A. and Bryzgalov, I.A. (1988) Crystal structure of miharaite Cu4FePbBiS6. Doklady Akademii Nauk SSSR, 299, 123127 [in Russian].Google Scholar
Roth, P., Raber, T., Drechsler, E. and Cannon, R. (2014) The Lengenbach Quarry, Binn Valley, Switzerland. The Mineralogical Record, 45, 157196.Google Scholar
Sachdev, S.C. and Chang, L.L.Y.. (1975) Phase relations in the system tin-antimony-lead sulfides and the synthesis of cylindrite and franckeite. Economic Geology, 70, 11111122.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Wilson, A.J.C.. (1992) International Tables for X-ray Crystallography Volume C. Kluwer, Dordrecht, The Netherlands.Google Scholar