Skip to main content
Log in

Hyperandrogenism Induces Histo-Architectural Changes in the Rat Uterus

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The effects of androgens on the uterus have been poorly studied and they need to be clarified to understand why androgen excess, such as observed in women with polycystic ovary syndrome (PCOS), is a risk factor for the development of endometrial hyperplasia, cancer, and infertility. Thus, uterine histomorphology in a PCOS experimental model was evaluated. Beginning at weaning, female rats were injected daily with dehydroepiandrosterone (DHEA, 6 mg/100 g body weight) or vehicle (sesame oil) for 20 consecutive days. On postnatal day 41 (PND41), DHEA-treated animals showed high serum testosterone levels. In addition, uterine histological analysis showed a significant increase in luminal epithelial height and glandular density without changes in cell proliferation. The thickness of the subepithelial stroma and myometrium also increased in these animals. The effect of DHEA on uterine thickness was accompanied by a significant reduction in cell density in both tissue compartments (subepithelial stroma and myometrium). Cell proliferation was not altered in the myometrium, whereas a decrease in the proliferative activity was seen at PND41 in the subepithelial stroma of DHEA animals. The analysis of the extracellular space showed that the changes in the thickness of the subepithelial stroma and myometrium were related to an increase in the organization of collagen fibers and water imbibition. The latter was associated with higher aquaporin 3 and 8 expression. This study provides evidence to further the understanding of PCOS-associated hyperandrogenism effects on uterine architecture. This could have implications for the regulation of uterine function and the development of uterine lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Li X, Guo YR, Lin JF, Feng Y, Billig H, Shao R. Combination of Diane-35 and metformin to treat early endometrial carcinoma in PCOS women with insulin resistance. J Cancer. 2014;5(3):173–181.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Okon MA, Laird SM, Tuckerman EM, Li TC. Serum androgen levels in women who have recurrent miscarriages and their correlation with markers of endometrial function. Fertil Steril. 1998;69(4):682–690.

    CAS  PubMed  Google Scholar 

  3. Xita N, Georgiou I, Tsatsoulis A. The genetic basis of polycystic ovary syndrome. Eur J Endocrinol. 2002;147(6):717–725.

    CAS  PubMed  Google Scholar 

  4. Balen A. Polycystic ovary syndrome and cancer. Hum Reprod Update. 2001;7(6):522–525.

    CAS  PubMed  Google Scholar 

  5. Pillay OC, Te Fong LF, Crow JC, et al. The association between polycystic ovaries and endometrial cancer. Hum Reprod. 2006;21(4):924–929.

    CAS  PubMed  Google Scholar 

  6. Simitsidellis I, Gibson DA, Cousins FL, Esnal-Zufiaurre A, Saunders PT. A role for androgens in epithelial proliferation and formation of glands in the mouse uterus. Endocrinology. 2016;157(5):2116–2128.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nantermet PV, Masarachia P, Gentile MA, et al. Androgenic induction of growth and differentiation in the rodent uterus involves the modulation of estrogen-regulated genetic pathways. Endocrinology. 2005;146(2):564–578.

    CAS  PubMed  Google Scholar 

  8. Walters KA, McTavish KJ, Seneviratne MG, et al. Subfertile female androgen receptor knockout mice exhibit defects in neuroendocrine signaling, intraovarian function, and uterine development but not uterine function. Endocrinology. 2009;150(7):3274–3282.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Schmidt WN, Katzenellenbogen BS. Androgen-uterine interactions: an assessment of androgen interaction with the testosterone- and estrogen-receptor systems and stimulation of uterine growth and progesterone-receptor synthesis. Mol Cell Endocrinol. 1979;15(2):91–108.

    CAS  PubMed  Google Scholar 

  10. Tuckerman EM, Okon MA, Li T, Laird SM. Do androgens have a direct effect on endometrial function? An in vitro study. Fertil Steril. 2000;74(4):771–779.

    CAS  PubMed  Google Scholar 

  11. Guerra MT, Sanabria M, Grossman G, Petrusz P, Kempinas Wde G. Excess androgen during perinatal life alters steroid receptor expression, apoptosis, and cell proliferation in the uteri of the offspring. Reprod Toxicol. 2013;40:1–7.

    CAS  PubMed  Google Scholar 

  12. Luque EH, Muñoz de Toro MM, Ramos JG, Rodriguez HA, Sherwood OD. Role of relaxin and estrogen in the control of eosinophilic invasion and collagen remodeling in rat cervical tissue at term. Biol Reprod. 1998;59(4):795–800.

    CAS  PubMed  Google Scholar 

  13. Rodriguez HA, Kass L, Varayoud J, et al. Collagen remodelling in the guinea-pig uterine cervix at term is associated with a decrease in progesterone receptor expression. Mol Hum Reprod. 2003;9(12):807–813.

    CAS  PubMed  Google Scholar 

  14. Leppert PC, Jayes FL, Segars JH. The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int. 2014;2014:783289.

    PubMed  PubMed Central  Google Scholar 

  15. Russo LA, Peano BJ, Trivedi SP, et al. Regulated expression of matrix metalloproteinases, inflammatory mediators, and endometrial matrix remodeling by 17beta-estradiol in the immature rat uterus. Reprod Biol Endocrinol. 2009;7:124.

    PubMed  PubMed Central  Google Scholar 

  16. Lobl RT, Maenza RM. Androgenization: alterations in uterine growth and morphology. Biol Reprod. 1975;13(3):255–268.

    CAS  PubMed  Google Scholar 

  17. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007;8(3):221–233.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jablonski EM, McConnell NA, Hughes FM Jr, Huet-Hudson YM. Estrogen regulation of aquaporins in the mouse uterus: potential roles in uterine water movement. Biol Reprod. 2003;69(5):1481–1487.

    CAS  PubMed  Google Scholar 

  19. Lindsay LA, Murphy CR. Aquaporins are upregulated in glandular epithelium at the time of implantation in the rat. J Mol Histol. 2007;38(1):87–95.

    CAS  PubMed  Google Scholar 

  20. Zhu C, Jiang Z, Bazer FW, Johnson GA, Burghardt RC, Wu G. Aquaporins in the female reproductive system of mammals. Front Biosci (Landmark Ed). 2015;20:838–871.

    CAS  Google Scholar 

  21. Zou LB, Zhang RJ, Tan YJ, et al. Identification of estrogen response element in the aquaporin-2 gene that mediates estrogen-induced cell migration and invasion in human endometrial carcinoma. J Clin Endocrinol Metab. 2011;96(9):E1399–E1408.

    CAS  PubMed  Google Scholar 

  22. Chinigarzadeh A, Muniandy S, Salleh N. Estradiol, progesterone and genistein differentially regulate levels of aquaporin (AQP)-1, 2, 5 and 7 expression in the uteri of ovariectomized, sex-steroid deficient rats. Steroids. 2016;115:47–55.

    CAS  PubMed  Google Scholar 

  23. Salleh N, Mokhtar HM, Kassim NM, Giribabu N. Testosterone induces increase in aquaporin (AQP)-1, 5, and 7 expressions in the uteri of ovariectomized rats. J Membr Biol. 2015;248(6):1097–1105.

    CAS  PubMed  Google Scholar 

  24. Rosenfield RL. The polycystic ovary morphology-polycystic ovary syndrome spectrum. J Pediatr Adolesc Gynecol. 2015;28(6):412–419.

    PubMed  Google Scholar 

  25. Ashby J, Odum J, Foster JR. Activity of raloxifene in immature and ovariectomized rat uterotrophic assays. Regul Toxicol Pharmacol. 1997;25(3):226–231.

    CAS  PubMed  Google Scholar 

  26. Horng SG, Wang TH, Wang HS. Estradiol-to-testosterone ratio is associated with response to metformin treatment in women with clomiphene citrate-resistant polycystic ovary syndrome (PCOS). Chang Gung Med J. 2008;31(5):477–483.

    PubMed  Google Scholar 

  27. Chen J, Shen S, Tan Y, et al. The correlation of aromatase activity and obesity in women with or without polycystic ovary syndrome. J Ovarian Res. 2015;8:11.

    PubMed  PubMed Central  Google Scholar 

  28. Varayoud J, Monje L, Bernhardt T, Muñoz-de-Toro M, Luque EH, Ramos JG. Endosulfan modulates estrogen-dependent genes like a non-uterotrophic dose of 17beta-estradiol. Reprod Toxicol. 2008;26(2):138–145.

    CAS  PubMed  Google Scholar 

  29. Durando M, Kass L, Piva J, et al. Prenatal bisphenol A exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115(1):80–86.

    CAS  PubMed  Google Scholar 

  30. Montes GS. Structural biology of the fibres of the collagenous and elastic systems. Cell Biol Int. 1996;20(1):15–27.

    CAS  PubMed  Google Scholar 

  31. Kass L, Ramos JG, Ortega HH, et al. Relaxin has a minor role in rat mammary gland growth and differentiation during pregnancy. Endocrine. 2001;15(3):263–269.

    CAS  PubMed  Google Scholar 

  32. Bosquiazzo VL, Vigezzi L, Muñoz-de-Toro M, Luque EH. Perinatal exposure to diethylstilbestrol alters the functional differentiation of the adult rat uterus. J Steroid Biochem Mol Biol. 2013;138:1–9.

    CAS  PubMed  Google Scholar 

  33. Guerrero Schimpf M, Milesi MM, Ingaramo PI, Luque EH, Varayoud J. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus. Toxicology. 2017;376:2–14.

    CAS  PubMed  Google Scholar 

  34. Ramos JG, Varayoud J, Bosquiazzo VL, Luque EH, Muñoz-de-Toro M. Cellular turnover in the rat uterine cervix and its relationship to estrogen and progesterone receptor dynamics. Biol Reprod. 2002;67(3):735–742.

    CAS  PubMed  Google Scholar 

  35. Higuchi R, Fockler C, Dollinger G, Watson R. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (N Y). 1993;11(9):1026–1030.

    CAS  Google Scholar 

  36. Cikos S, Bukovska A, Koppel J. Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Mol Biol. 2007;8:113.

    PubMed  PubMed Central  Google Scholar 

  37. Giudice LC. Endometrium in PCOS: Implantation and predisposition to endocrine CA. Best Pract Res Clin Endocrinol Metab. 2006;20(2):235–244.

    CAS  PubMed  Google Scholar 

  38. Liu W, Liu W, Fu Y, Wang Y, Zhang Y. Bak Foong pills combined with metformin in the treatment of a polycystic ovarian syndrome rat model. Oncol Lett. 2015;10(3):1819–1825.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee MJ, Jang M, Bae CS, et al. Effects of oriental medicine Kyung-Ok-Ko on uterine abnormality in hyperandrogenized rats. Rejuvenation Res. 2016;19(6):456–466.

    CAS  PubMed  Google Scholar 

  40. Luchetti CG, Solano ME, Sander V, et al. Effects of dehydroepiandrosterone on ovarian cystogenesis and immune function. J Reprod Immunol. 2004;64(1–2):59–74.

    CAS  PubMed  Google Scholar 

  41. Kreimann EL, Cabrini RL. Subcellular redistribution of NHERF1 in response to dehydroepiandrosterone (DHEA) administration in endometrial glands of Wistar rats. Reprod Sci. 2013;20(1):103–111.

    PubMed  Google Scholar 

  42. Choi JP, Zheng Y, Skulte KA, Handelsman DJ, Simanainen U. Development and characterization of uterine glandular epithelium specific androgen receptor knockout mouse model. Biol Reprod. 2015;93(5):120.

    PubMed  Google Scholar 

  43. Sourla A, Flamand M, Belanger A, Labrie F. Effect of dehydroepiandrosterone on vaginal and uterine histomorphology in the rat. J Steroid Biochem Mol Biol. 1998;66(3):137–149.

    CAS  PubMed  Google Scholar 

  44. Northey JJ, Przybyla L, Weaver VM. Tissue force programs cell fate and tumor aggression. Cancer Discov. 2017;7(11):1224–1237.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kass L, Erler JT, Dembo M, Weaver VM. Mammary epithelial cell: influence of extracellular matrix composition and organization during development and tumorigenesis. Int J Biochem Cell Biol. 2007;39(11):1987–1994.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Levental KR, Yu H, Kass L, et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell. 2009;139(5):891–906.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen XF, Li CF, Lu L, Mei ZC. Expression and clinical significance of aquaglyceroporins in human hepatocellular carcinoma. Mol Med Rep. 2016;13(6):5283–5289.

    CAS  PubMed  Google Scholar 

  48. Xie H, Liu F, Liu L, et al. Protective role of AQP3 in UVA-induced NHSFs apoptosis via Bcl2 up-regulation. Arch Dermatol Res. 2013;305(5):397–406.

    CAS  PubMed  Google Scholar 

  49. Trigueros-Motos L, Perez-Torras S, Casado FJ, Molina-Arcas M, Pastor-Anglada M. Aquaporin 3 (AQP3) participates in the cytotoxic response to nucleoside-derived drugs. BMC Cancer. 2012;12:434.

    CAS  PubMed  Google Scholar 

  50. Anderson J, Brown N, Mahendroo MS, Reese J. Utilization of different aquaporin water channels in the mouse cervix during pregnancy and parturition and in models of preterm and delayed cervical ripening. Endocrinology. 2006;147(1):130–140.

    CAS  PubMed  Google Scholar 

  51. Pan H, Sun CC, Zhou CY, Huang HF. Expression of aquaporin-1 in normal, hyperplasic, and carcinomatous endometria. Int J Gynaecol Obstet. 2008;101(3):239–244.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Lis Bosquiazzo PhD.

Additional information

Authors’ Note

E.H.L. and V.L.B. shared last authorship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bracho, G.S., Altamirano, G.A., Kass, L. et al. Hyperandrogenism Induces Histo-Architectural Changes in the Rat Uterus. Reprod. Sci. 26, 657–668 (2019). https://doi.org/10.1177/1933719118783881

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719118783881

Keywords

Navigation