Skip to main content

Advertisement

Log in

Composition of the Stroma in the Human Endometrium and Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

To analyze whether the endometrial and endometriotic microenvironment is involved in the pathogenesis of endometriosis, we characterized the stromal composition. We used CD90 for fibroblasts, α-smooth muscle actin for myofibroblasts as well as CD10 and CD140b for mesenchymal stromal cells. Quantification of eutopic endometrial stroma of cases without endometriosis showed a high percentage of stromal cells positive for CD140b (80.7%) and CD10 (67.4%), a moderate number of CD90-positive cells (57.9%), and very few α-smooth muscle actin-positive cells (8.5%). These values are highly similar to cases with endometriosis showing only minor changes: CD140b (76.7%), CD10 (63%), CD90 (53.9%), and α-smooth muscle actin (6.9%). There are no significant differences in the composition of CD140b- and CD10-positive stromal cells between the eutopic endometrial stroma and the 3 different endometriotic entities (ovarian, peritoneal, and deep infiltrating endometriosis), except for a significant difference between CD10-positive stromal cells in peritoneal lesions compared to ovarian lesions. However, the percentage of CD90-positive stromal cells was reduced in the 3 different endometriotic entities compared to the endometrium, especially significant in the ovarian lesions. In contrast, the percentage of α-smooth muscle actin-positive cells in the ovary was moderately increased. Taken together, the marker signature of eutopic endometrial and endometriotic stromal cells resembles mostly mesenchymal stromal cells. Our results show clearly that the proportion of the different stromal cell types in the endometrium with or without endometriosis does not differ significantly, thus suggesting that the stromal eutopic endometrial micro-environment does not contribute to the pathogenesis of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doljanski F. The sculpturing role of fibroblast-like cells in morphogenesis. Perspect Biol Med. 2004;47(3):339–356.

    PubMed  Google Scholar 

  2. Bianco P. “Mesenchymal” stem cells. Ann Rev Cell Dev Biol. 2014;30:677–704.

    CAS  Google Scholar 

  3. Tarin D. Role of the host stroma in cancer and its therapeutic significance. Cancer Metastasis Rev. 2013;32(3–4):533–566.

    Google Scholar 

  4. Bani D, Nistri S. New insights into the morphogenic role of stromal cells and their relevance for regenerative medicine. Lessons from the heart. J Cell Mol Med. 2014;18(3):363–370.

    PubMed  PubMed Central  Google Scholar 

  5. Kolonin MG, Evans KW, Mani SA, Gomer RH. Alternative origins of stroma in normal organs and disease. Stem Cell Res. 2012;8(2):312–323.

    CAS  PubMed  Google Scholar 

  6. Kendall RT, Feghali-Bostwick CA. Fibroblasts in fibrosis: novel roles and mediators. Front Pharmacol. 2014;5:1–13.

    CAS  Google Scholar 

  7. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–317.

    CAS  PubMed  Google Scholar 

  8. Lee WS, Jain MK, Arkonac BM, et al. Thy-1, a novel marker for angiogenesis is upregulated by inflammatory cytokines. Circ Res. 1998;82(8):845–851.

    CAS  PubMed  Google Scholar 

  9. Kretschmer S, Dethlefsen I, Hagner-Benes S, et al. Visualization of intrapulmonary lymph vessels in healthy and inflamed murine lung using CD90/Thy-1 asamarker. Plos One. 2013;8(2):e55201.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Österreicher CH, Penz-Österreicher M, Grivennikov SI, et al. Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci U S A. 2011;108(1):308–313.

    PubMed  Google Scholar 

  11. Kong P, Christia P, Saxena A, Frangogiannis NG. Lack of specificity of fibroblast-specific protein 1 in cardiac remodeling and fibrosis. Am J Physiol Heart Circ Physiol. 2013;305(9):H1363–H1372.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Keeley EC, Mehrad B, Strieter RM. Fibrocytes: bringing new insights into mechanisms of inflammation and fibrosis. Int J Biochem Cell Biol. 2010;42(4):535–542.

    CAS  PubMed  Google Scholar 

  13. Barth PJ, Ramaswamy A, Moll R. CD34+ fibrocytes in normal cervical stroma, cervical intraepithelial neoplasia III, and invasive squamous cell carcinoma of the cervix uteri. Virchows Arch. 2002;441(6):564–568.

    PubMed  Google Scholar 

  14. Hinz B, Phan SH, Thannickal VJ, et al. Recent developments in myofibroblast biology. Am J Pathol. 2012;180(4):1340–1355.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eyden B, Banerjee SS, Shenjere P, Fisher C. The myofibroblast and its tumours. J Clin Pathol. 2009;62(3):236–249.

    CAS  PubMed  Google Scholar 

  16. Lin CS, Xin ZC, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histol Histopathol. 2013;28(9):1109–1116.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bühring HJ, Battula VL, Treml S, et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci. 2007;1106:262–271.

    PubMed  Google Scholar 

  18. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. McCluggage WG, Sumathi VP, Maxwell P. CD10 is a sensitive and diagnostically useful immunohistochemical marker of normal endometrial stroma and of endometrial stromal neoplasms. Histopathology. 2001;39(3):273–278.

    CAS  PubMed  Google Scholar 

  20. Koumas L, King AE, Critchley HO, Kelly RW, Phipps RP. Fibroblast heterogeneity: existence of functionally distinct Thy 1(+) and Thy 1(—) human female reproductive tract fibroblasts. Am J Pathol. 2001;159(3):925–935.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod. 2008;23(4):934–943.

    CAS  PubMed  Google Scholar 

  22. Schwab KE, Gargett CE. Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. Hum Reprod. 2007;22(11):2903–2911.

    CAS  PubMed  Google Scholar 

  23. Czernobilsky B, Remadi S, Gabbiani G. Alpha-smooth muscle actin and other stromal markers in endometrial mucosa. Virchows Arch A Pathol Anat Histopathol. 1993;422(4):313–317.

    CAS  PubMed  Google Scholar 

  24. McCuaig R, Wu FW, Dunn J, Rao S, Dahlstrom JE. The biological and clinical significance of stromal-epithelial interactions in breast cancer. Pathology. 2017;49(2):133–140.

    CAS  PubMed  Google Scholar 

  25. Boyle DP, McCluggage WG. Peritoneal stromal endometriosis: a detailed morphological analysis of a large series of cases of a common and under-recognised form of endometriosis. J Clin Pathol. 2009;62(6):530–533.

    CAS  PubMed  Google Scholar 

  26. Haas D, Chvatal R, Habelsberger A, Wurm P, Schimetta W, Oppelt P. Comparison of revised American Fertility Society and ENZIAN staging: a critical evaluation of classifications of endometriosis on the basis of our patient population. Fertil Steril. 2011;95(5):1574–1578.

    PubMed  Google Scholar 

  27. Konrad L, Scheiber JA, Volck-Badouin E, et al. Alternative splicing of TGF-betas and their high-affinity receptors TβRI, TβRII and TβRIII (Betaglycan) reveal new variants in human prostatic cells. BMC Genomics. 2007;8:318.

    PubMed  PubMed Central  Google Scholar 

  28. Magguer-Satta V, Besancon R, Bachelard-Cascales E. Concise review: neutral endopeptidase (CD10): a multi-faceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cells. 2011;29(3):389–396.

    Google Scholar 

  29. Shipp MA, Stefano GB, Switzer SN, Griffin JD, Reinherz EL. CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morphology, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood. 1991;78(7):1834–1841.

    CAS  PubMed  Google Scholar 

  30. Oliva E. CD10 expression in the female genital tract: does it have useful diagnostic applications? Adv Anat Pathol. 2004;11(6):310–315.

    CAS  PubMed  Google Scholar 

  31. Sumathi VP, McGluggage WG. CD10 is useful in demonstrating endometrial stroma at ectopic sites and in confirming a diagnosis of endometriosis. J Clin Pathol. 2002;55(5):391–392.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Groisman GM, Meir A. CD10 is helpful in detecting occult or inconspicuous endometrial stromal cells in cases of presumptive endometriosis. Arch Pathol Lab Med. 2003;127(8):1003–1006.

    PubMed  Google Scholar 

  33. Srodon M, Klein WM, Kurman RJ. CD10 immunostaining does not distinguish endometrial carcinoma invading myometrium from carcinoma involving adenomyosis. Am J Surg Pathol. 2003;27(6):786–789.

    PubMed  Google Scholar 

  34. Capobianco G, Wenger JM, Marras V, et al. Immunohistochemical evaluation of epithelial antigen Ber-Ep4 and Cd10: new markers for endometriosis? Eur J Gynaecol Oncol. 2013;34(3):254-246.

    Google Scholar 

  35. Iwase A, Kotani T, Goto M, et al. Possible involvement of CD10 in the development of endometriosis due to its inhibitory effects on CD44-dependent cell adhesion. Reprod Sci. 2014;21(1):82–88.

    PubMed  PubMed Central  Google Scholar 

  36. Bachelard-Cascales E, Chapellier M, Delay E, et al. The CD10 enzyme is a key player to identify and regulate human mammary stem cells. Stem Cells. 2010;28(6):1081–1088.

    CAS  PubMed  Google Scholar 

  37. Andrae J, Gallini R, Betsholtz C. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 2008;22(10):1276–1312.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Cao Y. Multifarious functions of PDGFs and PDGFRs in tumor growth and metastasis. Trends Mol Med. 2013;19(8):460–473.

    CAS  PubMed  Google Scholar 

  39. Chegini N, Rossi MJ, Masterson BJ. Platelet-derived growth factor (PDGF), epidermal growth factor (EGF), and EGF and PDGFb-receptors in human endometrial tissue: localization and in vitro action. Endocrinology. 1992;130(4):2373–2385.

    CAS  PubMed  Google Scholar 

  40. Ferrero S, Alessandri F, Racca A, Leone Roberti Maggiore U. Treatment of pain associated with deep endometriosis: alternatives and evidence. Fertil Steril. 2015;104(4):771–792.

    PubMed  Google Scholar 

  41. Sobue K, Hayashi K, Nishida W. Expressional regulation of smooth muscle cell-specific genes in association with phenotypic modulation. Mol Cell Biochem. 1999;190(1–2):105–118.

    CAS  PubMed  Google Scholar 

  42. Orlandi A, Ferlosio A, Ciucci A, et al. Cellular retinol-binding protein-1 expression in endometrial stromal cells: physiopathological and diagnostic implications. Histopathology. 2004;45(5):511–517.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Konrad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konrad, L., Kortum, J., Nabham, R. et al. Composition of the Stroma in the Human Endometrium and Endometriosis. Reprod. Sci. 25, 1106–1115 (2018). https://doi.org/10.1177/1933719117734319

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117734319

Keywords

Navigation