Skip to main content
Log in

Aberrantly Expressed SALL4 Promotes Cell Proliferation via β-Catenin/c-Myc Pathway in Human Choriocarcinoma Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Sal-like protein 4 (SALL4) has been proved to play a pivotal role in the development and progression of various cancers. Previous studies showed that SALL4 was highly expressed in human choriocarcinoma tissues. However, the role of SALL4 in the biological behavior of human choriocarcinoma cells remains largely unknown. In this study, we first elucidated that SALL4 was highly expressed in human choriocarcinoma cell lineJEG-3 and JAR. Sal-like protein 4 knockdown by small interfering RNA (siRNA) decreased c-Myc expression, whereas SALL4 overexpression by transfection of human pLenti-SALL4 construct promoted c-Myc expression. Further data showed that SALL4 overexpression improved cell proliferation of JEG-3 cells, which can be abrogated by c-Myc siRNA. Moreover, our data showed that SALL4 interact with β-catenin and SALL4 overexpression promoted the loca- lization of β-catenin in the nucleus and β-catenin siRNA abrogated SALL4-induced c-Myc expression in JEG-3 cells. These data indicate that aberrantly expressed SALL4 in human choriocarcinoma cells may promote cell proliferation via β-catenin/c-Myc pathway, indicating that SALL4 may be potential treatment targets of human choriocarcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yang J, Chai L, Fowles TC, et al. Genome-wide analysis reveals SALL4 to be a major regulator of pluripotency in murine embryonic stem cells. Proc Natl Acad Sci USA. 2008;105(50):19756–19761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang J, Tam WL, Tong GQ, et al. SALL4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol. 2006;8(10):1114–1123.

    Article  CAS  PubMed  Google Scholar 

  3. Gao C, Dimitrov T, Yong KJ, et al. Targeting transcription factor SALL4 in acute myeloid leukemia by interrupting its interaction with an epigenetic complex. Blood. 2013;121(8):1413–1421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Oikawa T, Kamiya A, Zeniya M, et al. Sal-like protein 4 (SALL4), a stem cell biomarker in liver cancers. Hepatology. 2013;57(4):1469–1483.

    Article  CAS  PubMed  Google Scholar 

  5. Cheng J, Deng R, Wu C, et al. Shi L Inhibition of SALL4 suppresses carcinogenesis of colorectal cancer via regulating Gli1 expression. Int J Clin Exp Pathol. 2015;8(9):10092–10101.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kobayashi D, Kuribayshi K, Tanaka M, Watanabe N. SALL4 is essential for cancer cell proliferation and is overexpressed at early clinical stages in breast cancer. Int J Oncol. 2011;38(4):933–939.

    CAS  PubMed  Google Scholar 

  7. Li A, Jiao Y, Yong KJ, et al. SALL4 is a new target in endometrial cancer. Oncogene. 2015;34(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  8. Kobayashi D, Kuribayashi K, Tanaka M, Watanabe N. Overexpression of SALL4 in lung cancer and its importance in cell proliferation. Oncol Rep. 2011;26(4):965–970.

    CAS  PubMed  Google Scholar 

  9. Zhang L, Xu Z, Xu X, et al. SALL4, a novel marker for human gastric carcinogenesis and metastasis. Oncogene. 2014;33(48): 5491–5500.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X, Yuan X, Zhu W, Qian H, Xu W. SALL4: an emerging cancer biomarker and target. Cancer Lett. 2015;357(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  11. Elling U, Klasen C, Eisenberger T, Anlag K, Treier M. Murine inner cell mass-derived lineages depend on SALL4 function. Proc Natl Acad Sci USA. 2006;103(44):16319–16324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yuri S, Fujimura S, Nimura K, et al. SALL4 is essential for stabilization, but not for pluripotency, of embryonic stem cells by repressing aberrant trophectoderm gene expression. Stem Cells. 2009;27(4):796–805.

    Article  CAS  PubMed  Google Scholar 

  13. Stichelbout M, Devisme L, Franquet-Ansart H, et al. SALL4 expression in gestational trophoblastic tumors: a useful tool to distinguish choriocarcinoma from placental site trophoblastic tumor and epithelioid trophoblastic tumor. Hum Pathol. 2016;54:121–126.

    Article  CAS  PubMed  Google Scholar 

  14. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469–480.

    Article  CAS  PubMed  Google Scholar 

  15. Logan CY, Nusse R. The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 2004;20:781–810.

    Article  CAS  PubMed  Google Scholar 

  16. Krivega M, Essahib W, Van de Velde H. WNT3 and membraneassociated β-catenin regulate trophectoderm lineage differentiation in human blastocysts. Mol Hum Reprod. 2015;21(9): 711–722.

    Article  CAS  PubMed  Google Scholar 

  17. Matsuura K, Jigami T, Taniue K, et al. Identification of a link between Wnt/β-catenin signalling and the cell fusion pathway. Nat Commun. 2011;2:548.

    Article  PubMed  Google Scholar 

  18. Ma Y, Cui W, Yang J, et al. SALL4, a novel oncogene, is constitutively expressed in human acute myeloid leukemia (AML) and induces AML in transgenic mice. Blood. 2006;108(8): 2726–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shuai X, Zhou D, Shen T, et al. Overexpression of the novel oncogene SALL4 and activation of the Wnt/beta-catenin pathway in myelodysplastic syndromes. Cancer Genet Cytogenet. 2009;194(2):119–124.

    Article  CAS  PubMed  Google Scholar 

  20. He J, Zhou M, Chen X, et al. Inhibition of SALL4 reduces tumorigenicity involving epithelial-mesenchymal transition via Wnt/β-catenin pathway in esophageal squamous cell carcinoma. J Exp Clin Cancer Res. 2016;35(1):98.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zhao HB, Tang CL, Hou YL, et al. CXCL12/CXCR4 axis triggers the activation of EGF receptor and ERK signaling pathway in CsA-induced proliferation of human trophoblast cells. PLoS One. 2012;7(7):e38375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu L, Zhang J, Yang X, Fang C, Xu H, Xi X. SALL4 as an epithelial-mesenchymal transition and drug resistance inducer through the regulation of c-Myc in endometrial cancer. PLoS One. 2015;10(9):e0138515.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Betteridge KJ. Equine embryology: an inventory of unanswered questions. Theriogenology. 2007;68(suppl 1):S9–S21

    Article  CAS  PubMed  Google Scholar 

  24. Robson SC, Simpson H, Ball E, Lyall F, Bulmer JN. Punch biopsy of the human placental bed. Am J Obstet Gynecol. 2002;187(5): 1349–1355.

    Article  PubMed  Google Scholar 

  25. Gauster M, Moser G, Orendi K, Huppertz B. Factors involved in regulating trophoblast fusion: potential role in the development of preeclampsia. Placenta. 2009;30(suppl A):S49–S54.

    Article  PubMed  Google Scholar 

  26. Goodwin AM, Kitajewski J, D’Amore PA. Wnt1 and Wnt5a affect endothelial proliferation and capillary length; Wnt2 does not. Growth Factors. 2007;25(1):25–32.

    Article  CAS  PubMed  Google Scholar 

  27. Lee JG, Heur M. WNT10B Enhances proliferation through betacatenin and RAC1 GTPase in human corneal endothelial cells. Biol Chem. 2015;290(44):26752–26764.

    Article  CAS  Google Scholar 

  28. MacDonald BT, Tamai K, He X. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell. 2009;17(1): 9–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morin PJ, Sparks AB, Korinek V, et al. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997;275(5307):1787–1790.

    Article  CAS  PubMed  Google Scholar 

  30. Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15): 1837–1851.

    CAS  PubMed  Google Scholar 

  31. Al-Harthi L. Wnt/beta-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J. Neuroimmune Pharmacol. 2012;7(4):725–730.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wang J, Fang X, Liang W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano. 2012;6(6):5018–5030.

    Article  CAS  PubMed  Google Scholar 

  33. Bregoli L, Chiarini F, Gambarelli A, et al. Toxicity of antimony trioxide nanoparticles on human hematopoietic progenitor cells and comparison to cell lines. Toxicology. 2009;262(2):121–129.

    Article  CAS  PubMed  Google Scholar 

  34. Liu X, Krawczyk E, Suprynowicz FA, et al. Conditional reprogramming and long-term expansion of normal and tumor cells from human biospecimens. Nat Protoc. 2017;12(2):439–451.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Congjian Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Wu, L., Wu, J. et al. Aberrantly Expressed SALL4 Promotes Cell Proliferation via β-Catenin/c-Myc Pathway in Human Choriocarcinoma Cells. Reprod. Sci. 25, 435–442 (2018). https://doi.org/10.1177/1933719117715130

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719117715130

Keywords

Navigation