Skip to main content
Log in

Apelin in Normal Pregnancy and Pregnancies Complicated by Placental Insufficiency

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Introduction

Apelin is a potent inotropic agent and causes endothelium-mediated vasodilation. Its cardiovascular profile suggests a role in the regulation of gestational hemodynamics.

Methods

We longitudinally assessed maternal serum apelin levels and hemodynamics (cardiac output and total peripheral resistance) between 20 and 34 weeks gestation in 18 women at high risk of placental dysfunction. Placental apelin staining was assessed by immunohistochemistry in placentas from uncomplicated pregnancies (n = 6), preterm deliveries (n = 6), preeclampsia (PET, n = 8), and isolated intrauterine growth restriction (IUGR, n = 8). Placental apelin gene expression was assessed by quantitative polymerase chain reaction.

Results

In the high-risk cohort, 4 fetuses developed isolated IUGR and 6 women developed PET. We obtained a median of 5 (range 2-9) hemodynamic and apelin measurements per woman. Apelin levels throughout gestation were best fitted by a quadratic curve. Apelin levels between 20 and 26 weeks gestation correlated with total peripheral resistance (r = .57, P = .01) and showed a trend toward an inverse correlation with stroke volume (r = −.42, P = .08). Apelin serum levels were 30% lower in pregnancies complicated by IUGR than in uncomplicated pregnancies or in women with preeclampsia (P = .009). Placental apelin gene expression was similar in IUGR, PET, preterm, and term normal placentas. Apelin staining was seen both in syncytiotrophoblast and stroma of the placental villi. In IUGR placentas, apelin staining was strongly decreased in both compartments compared to normals. Preeclamptic placentas showed an intermediate staining.

Conclusions

Apelin levels mirror the cardiovascular changes seen in pregnancy. Serum and placental apelin levels are decreased in IUGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Savu O, Jurcut R, Giusca S, et al. Morphological and functional adaptation of the maternal heart during pregnancy. Circ Cardiovasc Imaging. 2012;5(3):289–297.

    Article  PubMed  Google Scholar 

  2. Salas SP, Marshall G, Gutierrez BL, Rosso P. Time course of maternal plasma volume and hormonal changes in women with preeclampsia or fetal growth restriction. Hypertension. 2006;47(2):203–208.

    Article  CAS  PubMed  Google Scholar 

  3. Valensise H, Vasapollo B, Gagliardi G, Novelli GP. Early and late preeclampsia: two different maternal hemodynamic states in the latent phase of the disease. Hypertension. 2008;52(5):873–880.

    Article  CAS  PubMed  Google Scholar 

  4. Schrier RW, Niederberger M. Paradoxes of body fluid volume regulation in health and disease. A unifying hypothesis. West J Med. 1994;161(4):393–408.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Barnes G, Japp AG, Newby DE. Translational promise of the apelin—APJ system. Heart 2010;96(13):1011–1016.

    Article  CAS  PubMed  Google Scholar 

  6. Hus-Citharel A, Bouby N, Frugiere A, Bodineau L, Gasc JM, Llorens-Cortes C. Effect of apelin on glomerular hemodynamic function in the rat kidney. Kidney Int. 2008;74(4):486–494.

    Article  CAS  PubMed  Google Scholar 

  7. Habata Y, Fujii R, Hosoya M, et al. Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta. 1999;1452(1):25–35.

    Article  CAS  PubMed  Google Scholar 

  8. Hosoya M, Kawamata Y, Fukusumi S, et al. Molecular and functional characteristics of APJ. Tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem. 2000;275(28):21061–21067.

    Article  CAS  PubMed  Google Scholar 

  9. Pitkin SL, Maguire JJ, Bonner TI, Davenport AP. International Union of Basic and Clinical Pharmacology. LXXIV. Apelin receptor nomenclature, distribution, pharmacology, and function. Pharmacol Rev. 2010;62(3):331–342.

    Article  CAS  PubMed  Google Scholar 

  10. Vickers C, Hales P, Kaushik V, et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002;277(17):14838–14843.

    Article  CAS  PubMed  Google Scholar 

  11. Van Mieghem T, van Bree R, Van Herck E, Pijnenborg R, Deprest J, Verhaeghe J. Maternal apelin physiology during rat pregnancy: the role of the placenta. Placenta 2010;31(8):725–730.

    Article  PubMed  Google Scholar 

  12. Proctor LK, Toal M, Keating S, et al. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2009;34(3):274–282.

    Article  CAS  PubMed  Google Scholar 

  13. Spencer K, Yu CK, Savvidou M, et al. Prediction of preeclampsia by uterine artery Doppler ultrasonography and maternal serum pregnancy-associated plasma protein-A, free beta-human chorionic gonadotropin, activin A and inhibin A at 22 + 0 to 24 + 6 weeks’ gestation. Ultrasound Obstet Gynecol. 2006;27(6):658–663.

    Article  CAS  PubMed  Google Scholar 

  14. Albaiges G, Missfelder-Lobos H, Parra M, Lees C, Cooper D, Nicolaides KH. Comparison of color Doppler uterine artery indices in a population at high risk for adverse outcome at 24 weeks’ gestation. Ultrasound Obstet Gynecol. 2003;21(2):170–173.

    Article  CAS  PubMed  Google Scholar 

  15. Stott D, Bolten M, Salman M, Paraschiv D, Clark K, Kametas NA. Maternal demographics and hemodynamics for the prediction of fetal growth restriction at booking, in pregnancies at high risk for placental insufficiency [published online November 24, 2015]. Acta Obstet Gynecol Scand. 2015. doi: 10.1111/aogs.12823.

  16. Drewlo S, Levytska K, Kingdom J. Revisiting the housekeeping genes of human placental development and insufficiency syndromes. Placenta. 2012;33(11):952–954.

    Article  CAS  PubMed  Google Scholar 

  17. Schindelin J, Arganda-Carreras I, Frise E, et al. Fiji: an opensource platform for biological-image analysis. Nat Methods. 2012;9(7):676–682.

    Article  CAS  PubMed  Google Scholar 

  18. Doherty A, Carvalho JC, Drewlo S, et al. Altered hemodynamics and hyperuricemia accompany an elevated sFlt-1/PlGF ratio before the onset of early severe preeclampsia. J Obstet Gynaecol Can. 2014;36(8):692–700.

    Article  PubMed  Google Scholar 

  19. Bortoff KD, Qiu C, Runyon S, Williams MA, Maitra R. Decreased maternal plasma apelin concentrations in preeclampsia. Hypertens Pregnancy. 2012;31(4):398–404.

    Article  CAS  PubMed  Google Scholar 

  20. Simsek Y, Celik O, Yilmaz E, et al. Serum levels of apelin, salusin-alpha and salusin-beta in normal pregnancy and preeclampsia. J Matern Fetal Neonatal Med. 2012;25(9):1705–1708.

    Article  CAS  PubMed  Google Scholar 

  21. Kucur M, Tuten A, Oncul M, et al. Maternal serum apelin and YKL-40 levels in early and late-onset pre-eclampsia. Hypertens Pregnancy. 2014;33(4):467–475.

    Article  CAS  PubMed  Google Scholar 

  22. Yamaleyeva LM, Chappell MC, Brosnihan KB, et al. Downregulation of apelin in the human placental chorionic villi from preeclamptic pregnancies. Am J Physiol Endocrinol Metab. 2015;309(10):E852–E860.

    Article  CAS  PubMed  Google Scholar 

  23. Inuzuka H, Nishizawa H, Inagaki A, et al. Decreased expression of apelin in placentas from severe pre-eclampsia patients. Hypertens Pregnancy. 2013;32(4):410–421.

    Article  CAS  PubMed  Google Scholar 

  24. Cobellis L, De Falco M, Mastrogiacomo A, et al. Modulation of apelin and APJ receptor in normal and preeclampsia-complicated placentas. Histol Histopathol. 2007;22(1):1–8.

    CAS  PubMed  Google Scholar 

  25. Melchiorre K, Sutherland GR, Liberati M, Thilaganathan B. Maternal cardiovascular impairment in pregnancies complicated by severe fetal growth restriction. Hypertension. 2012;60(2):437–443.

    Article  CAS  PubMed  Google Scholar 

  26. Ashley EA, Powers J, Chen M, et al. The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo. Cardiovasc Res. 2005;65(1):73–82.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Van Mieghem MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Mieghem, T., Doherty, A., Baczyk, D. et al. Apelin in Normal Pregnancy and Pregnancies Complicated by Placental Insufficiency. Reprod. Sci. 23, 1037–1043 (2016). https://doi.org/10.1177/1933719116630422

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719116630422

Keywords

Navigation