Skip to main content

Advertisement

Log in

Comparative Characterization of Vaginal Cells Derived From Premenopausal Women With and Without Severe Pelvic Organ Prolapse

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

This study tested a hypothesis that primary human vaginal cells derived from tissue of premenopausal women with severe pelvic organ prolapse (POP-HVCs) would display differential functional characteristics as compared to vaginal cells derived from asymptomatic women with normal pelvic floor support (control-HVCs).

Methods

Vaginal tissue biopsies were collected from premenopausal patients with POP (n = 8) and asymptomatic controls (n = 7) during vaginal hysterectomy or repair. Primary vaginal cells were isolated by enzymatic digestion and characterized by immunocytochemistry. Cell attachment and proliferation on different matrices (collagen I, collagen II, collagen IV, fibronectin, laminin, tenascin, and vitronectin) were compared between POP-HVCs and control-HVCs. RNA was extracted, and the expression of 84 genes was screened using Human Extracellular Matrix and Adhesion Molecules RT2 Profiler PCR array. The expression of selected genes was verified by quantitative reverse transcription-polymerase chain reaction.

Results

(1) Control-HVCs attached to collagen IV more efficiently than POP-HVCs; (2) control-HVCs and POP-HVCs show a similar proliferation rate when plated on proNectin and collagen I; (3) when seeded on collagen I, resting POP-HVCs expressed significantly (P < .05) increased transcript levels of collagen VII, multiple matrix metalloproteinases (MMP3, MMP7, MMP10, MMP12, MMP13, and MMP14), integrins (ITGA1, ITGA4, ITGA6, ITGA8, ITGB1, ITGB2, and ITGB3), and cell adhesion molecules as compared to control-HVCs. Collagen XV and tissue inhibitors of MMPs (TIMP1 and TIMP2) as well as genes involved in the biogenesis and maturation of collagen and elastin fibers (LOX, LOXL1-LOXL3, BMP1, and ADAMTS2) were significantly downregulated in POP-HVCs versus control-HVCs (P < .05).

Conclusions

Resting primary POP-HVCs in vitro show altered cellular characteristics as compared to control-HVCs, which may influence their dynamic responses to external mechanical or hormonal stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barber MD, Visco AG, Wyman JF, Fantl JA, Bump RC. Sexual function in women with urinary incontinence and pelvic organ prolapse. Obstet Gynecol. 2002;99(2):281–289.

    PubMed  Google Scholar 

  2. Heit M, Rosenquist C, Culligan P, Graham C, Murphy M, Shott S. Predicting treatment choice for patients with pelvic organ prolapse. Obstet Gynecol. 2003;101(6):1279–1284.

    PubMed  Google Scholar 

  3. Nygaard I, Barber MD, Burgio KL, et al. Prevalence of symptomatic pelvic floor disorders in US women. JAMA. 2008;300(11):1311–1316.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Olsen AL, Smith VJ, Bergstrom JO, Colling JC, Clark AL. Epidemiology of surgically managed pelvic organ prolapse and urinary incontinence. Obstet Gynecol. 1997;89(4):501–506.

    CAS  PubMed  Google Scholar 

  5. Lukacz ES, Lawrence JM, Contreras R, Nager CW, Luber KM. Parity, mode of delivery, and pelvic floor disorders. Obstet Gynecol. 2006;107(6):1253–1260.

    PubMed  Google Scholar 

  6. Moalli PA, Jones IS, Meyn LA, Zyczynski HM. Risk factors associated with pelvic floor disorders in women undergoing surgical repair. Obstet Gynecol. 2003;101(5 pt 1):869–874.

    PubMed  Google Scholar 

  7. Buchsbaum GM, Duecy EE, Kerr LA, Huang LS, Perevich M, Guzick DS. Pelvic organ prolapse in nulliparous women and their parous sisters. Obstet Gynecol. 2006;108(6):1388–1393.

    PubMed  Google Scholar 

  8. Whitcomb EL, Rortveit G, Brown JS, et al. Racial differences in pelvic organ prolapse. Obstet Gynecol. 2009;114(6):1271–1277.

    PubMed  PubMed Central  Google Scholar 

  9. Norton PA, Allen-Brady K, Wu J, Egger M, Cannon-Albright L. Clinical characteristics of women with familial pelvic floor disorders. Int Urogynecol J. 2015;26(3):401–406.

    PubMed  Google Scholar 

  10. Carey M, Slack M, Higgs P, Wynn-Williams M, Cornish A. Vaginal surgery for pelvic organ prolapse using mesh and a vaginal support device. BJOG. 2008;115(3):391–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Abed H, Rahn DD, Lowenstein L, Balk EM, Clemons JL, Rogers RG. Incidence and management of graft erosion, wound granulation, and dyspareunia following vaginal prolapse repair with graft materials: a systematic review. Int Urogynecol J. 2011;22(7):789–798.

    PubMed  Google Scholar 

  12. Skala CE, Petry IB, Gebhard S, et al. Isolation of fibroblasts for coating of meshes for reconstructive surgery: differences between mesh types. Regen Med. 2009;4(2):197–204.

    CAS  PubMed  Google Scholar 

  13. Chen G, Sato T, Ohgushi H, Ushida T, Tateishi T, Tanaka J. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials. 2005;26(15):2559–2566.

    CAS  PubMed  Google Scholar 

  14. Alarab M, Bortolini MA, Drutz H, Lye S, Shynlova O. LOX family enzymes expression in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Int Urogynecol J. 2010;21(11):1397–1404.

    PubMed  Google Scholar 

  15. Bortolini MA, Shynlova O, Drutz HP, et al. Expression of bone morphogenetic protein-1 in vaginal tissue of women with severe pelvic organ prolapse. Am J Obstet Gynecol. 2011;204(6):544–548.

    CAS  PubMed  Google Scholar 

  16. Reddy KV, Mangale SS. Integrin receptors: the dynamic modulators of endometrial function. Tissue Cell. 2003;35(4):260–273.

    CAS  PubMed  Google Scholar 

  17. Martinez-Lemus LA, Wu X, Wilson E, et al. Integrins as unique receptors for vascular control. J Vasc Res. 2003;40(3):211–233.

    CAS  PubMed  Google Scholar 

  18. Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q)SARs. Bioorg Med Chem. 2007;15(6):2223–2268.

    CAS  PubMed  Google Scholar 

  19. Liang CC, Huang HY, Tseng LH, Chang SD, Lo TS, Lee CL. Expression of matrix metalloproteinase-2 and tissue inhibitors of metalloproteinase-1 (TIMP1, TIMP2 and TIMP3) in women with uterine prolapse but without urinary incontinence. Eur J Obstet Gynecol Reprod Biol. 2010;153(1):94–98.

    CAS  PubMed  Google Scholar 

  20. Moalli PA, Shand SH, Zyczynski HM, Gordy SC, Meyn LA. Remodeling of vaginal connective tissue in patients with prolapse. Obstet Gynecol. 2005;106(5 pt 1):953–963.

    PubMed  Google Scholar 

  21. Phillips CH, Anthony F, Benyon C, Monga AK. Collagen metabolism in the uterosacral ligaments and vaginal skin of women with uterine prolapse. BJOG. 2006;113(1):39–46.

    CAS  PubMed  Google Scholar 

  22. Shynlova O, Bortolini MA, Alarab M. Genes responsible for vaginal extracellular matrix metabolism are modulated by women’s reproductive cycle and menopause. Int Braz J Urol. 2013;39(2):257–267.

    PubMed  Google Scholar 

  23. Srikhajon K, Shynlova O, Preechapornprasert A, Chanrachakul B, Lye S. A new role for monocytes in modulating myometrial inflammation during human labor. Biol Reprod. 2014;91(1):10.

    PubMed  Google Scholar 

  24. Medel S, Alarab M, Kufaishi H, Drutz H, Shynlova O. Attachment of primary vaginal fibroblasts to absorbable and nonabsorbable implant materials coated with platelet-rich plasma: potential application in pelvic organ prolapse surgery. Female Pelvic Med Reconstr Surg. 2015;21(4):190–197.

    PubMed  Google Scholar 

  25. Maher CM, Feiner B, Baessler K, Glazener CM. Surgical management of pelvic organ prolapse in women: the updated summary version Cochrane review. Int Urogynecol J. 2011;22:1445–1457.

    PubMed  Google Scholar 

  26. Boennelycke M, Christensen L, Nielsen LF, Gras S, Lose G. Fresh muscle fiber fragments on a scaffold in rats—a new concept in urogynecology? Am J Obstet Gynecol. 2011;205(3):235–234.

    PubMed  Google Scholar 

  27. Ho MH, Heydarkhan S, Vernet D, et al. Stimulating vaginal repair in rats through skeletal muscle-derived stem cells seeded on small intestinal submucosal scaffolds. Obstet Gynecol. 2009;114(2 pt 1):300–309.

    PubMed  PubMed Central  Google Scholar 

  28. Hung MJ, Wen MC, Hung CN, Ho ES, Chen GD, Yang VC. Tissue-engineered fascia from vaginal fibroblasts for patients needing reconstructive pelvic surgery. Int Urogynecol J. 2010;21(9):1085–1093.

    PubMed  Google Scholar 

  29. Ulrich D, Edwards SL, Su K, et al. Human endometrial mesench-ymal stem cells modulate the tissue response and mechanical behavior of polyamide mesh implants for pelvic organ prolapse repair. Tissue Eng Part A. 2014;20(3–4):785–798.

    CAS  PubMed  Google Scholar 

  30. Kawano H, Kimura-Kuroda J, Komuta Y, et al. Role of the lesion scar in the response to damage and repair of the central nervous system. Cell Tissue Res. 2012;349(1):169–180.

    PubMed  PubMed Central  Google Scholar 

  31. Chelberg MK, Tsilibary EC, Hauser AR, McCarthy JB. Type IV collagen-mediated melanoma cell adhesion and migration: involvement of multiple, distinct domains of the collagen molecule. Cancer Res. 1989;49(17):4796–4802.

    CAS  PubMed  Google Scholar 

  32. Alarab M, Kufaishi H, Lye S, Drutz H, Shynlova O. Expression of extracellular matrix-remodeling proteins is altered in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Reprod Sci. 2014;21(6):704–715.

    PubMed  PubMed Central  Google Scholar 

  33. Chen BH, Wen Y, Li H, Polan ML. Collagen metabolism and turnover in women with stress urinary incontinence and pelvic prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2002;13(2):80–87.

    CAS  PubMed  Google Scholar 

  34. Kannan K, McConnell A, McLeod M, Rane A. Microscopic alterations of vaginal tissue in women with pelvic organ prolapse. J Obstet Gynaecol. 2011;31(3):250–253.

    CAS  PubMed  Google Scholar 

  35. Makinen J, Kahari VM, Soderstrom KO, Vuorio E, Hirvonen T. Collagen synthesis in the vaginal connective tissue of patients with and without uterine prolapse. Eur J Obstet Gynecol Reprod Biol. 1987;24(4):319–325.

    CAS  PubMed  Google Scholar 

  36. Kerkhof MH, Ruiz-Zapata AM, Bril H, et al. Changes in tissue composition of the vaginal wall of premenopausal women with prolapse. Am J Obstet Gynecol. 2014;210(2):168–169.

    PubMed  Google Scholar 

  37. Muona A, Eklund L, Vaisanen T, Pihlajaniemi T. Developmentally regulated expression of type XV collagen correlates with abnormalities in Col15a1(-/-) mice. Matrix Biol. 2002;21(1):89–102.

    CAS  PubMed  Google Scholar 

  38. Nishie W, Natsuga K, Nakamura H, et al. A recurrent ‘hot spot’ glycine substitution mutation, G2043 R in COL7A1, induces dominant dystrophic epidermolysis bullosa associated with intra-cytoplasmic accumulation of pro-collagen VII. J Dermatol Sci. 2014;75(1):69–71.

    CAS  PubMed  Google Scholar 

  39. Gailit J, Pierschbacher M, Clark RA. Expression of functional alpha 4 beta 1 integrin by human dermal fibroblasts. J Invest Dermatol. 1993;100(3):323–328.

    CAS  PubMed  Google Scholar 

  40. Valerius MT, Patterson LT, Feng Y, Potter SS. Hoxa 11 is upstream of Integrin alpha8 expression in the developing kidney. Proc Natl Acad Sci U S A. 2002;99(12):8090–8095.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Ma Y, Guess M, Datar A, et al. Knockdown of Hoxa11 in vivo in the uterosacral ligament and uterus of mice results in altered collagen and matrix metalloproteinase activity. Biol Reprod. 2012;86(4):100.

    PubMed  Google Scholar 

  42. Bump RC, Norton PA. Epidemiology and natural history of pelvic floor dysfunction. Obstet Gynecol Clin North Am. 1998;25(4):723–746.

    CAS  PubMed  Google Scholar 

  43. Swift S, Woodman P, O’Boyle A, et al. Pelvic Organ Support Study (POSST): the distribution, clinical definition, and epidemiologic condition of pelvic organ support defects. Am J Obstet Gynecol. 2005;192(3):795–806.

    PubMed  Google Scholar 

  44. Dallenbach P, Kaelin-Gambirasio I, Dubuisson JB, Boulvain M. Risk factors for pelvic organ prolapse repair after hysterectomy. Obstet Gynecol. 2007;110(3):625–632.

    PubMed  Google Scholar 

  45. Lin SY, Tee YT, Ng SC, Chang H, Lin P, Chen GD. Changes in the extracellular matrix in the anterior vagina of women with or without prolapse. Int Urogynecol J Pelvic Floor Dysfunct. 2007;18(1):43–48.

    PubMed  Google Scholar 

  46. Salman MC, Ozyuncu O, Sargon MF, Kucukali T, Durukan T. Light and electron microscopic evaluation of cardinal ligaments in women with or without uterine prolapse. Int Urogynecol J. 2010;21(12):235–239.

    PubMed  Google Scholar 

  47. Szauter KM, Cao T, Boyd CD, Csiszar K. Lysyl oxidase in development, aging and pathologies of the skin. Pathol Biol (Paris). 2005;53(7):448–456.

    CAS  Google Scholar 

  48. Lambert CA, Colige AC, Lapiere CM, Nusgens BV. Coordinated regulation of procollagens I and III and their post-translational enzymes by dissipation of mechanical tension in human dermal fibroblasts. Eur J Cell Biol. 2001;80(7):479–485.

    CAS  PubMed  Google Scholar 

  49. Howard EW, Crider BJ, Updike DL, et al. MMP-2 expression by fibroblasts is suppressed by the myofibroblast phenotype. Exp Cell Res. 2012;318(13):1542–1553.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruiz-Zapata AM, Kerkhof MH, Zandieh-Doulabi B, Brolmann HA, Smit TH, Helder MN. Fibroblasts from women with pelvic organ prolapse show differential mechanoresponses depending on surface substrates. Int Urogynecol J. 2013;24(9):1567–1575.

    PubMed  PubMed Central  Google Scholar 

  51. Ruiz-Zapata AM, Kerkhof MH, Zandieh-Doulabi B, Brolmann HA, Smit TH, Helder MN. Functional characteristics of vaginal fibroblastic cells from premenopausal women with pelvic organ prolapse. Mol Hum Reprod. 2014;20(11):1135–1143.

    CAS  PubMed  Google Scholar 

  52. Lafleur MA, Tester AM, Thompson EW. Selective involvement of TIMP2 in the second activational cleavage of pro-MMP-2: refinement of the pro-MMP-2 activation mechanism. FEBS Lett. 2003;553(3):457–463.

    CAS  PubMed  Google Scholar 

  53. Guo C, Piacentini L. Type I collagen-induced MMP-2 activation coincides with up-regulation of membrane type 1-matrix metalloproteinase and TIMP2 in cardiac fibroblasts. J Biol Chem. 2003;278(47):46699–46708.

    CAS  PubMed  Google Scholar 

  54. Borrirukwanit K, Lafleur MA, Mercuri FA, et al. The type I collagen induction of MT1-MMP-mediated MMP-2 activation is repressed by alphaVbeta3 integrin in human breast cancer cells. Matrix Biol. 2007;26(4):291–305.

    CAS  PubMed  Google Scholar 

  55. Brooks PC, Stromblad S, Sanders LC, et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin alpha v beta 3. Cell. 1996;85(5):683–693.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Shynlova PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kufaishi, H., Alarab, M., Drutz, H. et al. Comparative Characterization of Vaginal Cells Derived From Premenopausal Women With and Without Severe Pelvic Organ Prolapse. Reprod. Sci. 23, 931–943 (2016). https://doi.org/10.1177/1933719115625840

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115625840

Keywords

Navigation