Skip to main content

Advertisement

Log in

Metformin Suppresses Prostaglandin E2-Induced Cytochrome P450 Aromatase Gene Expression and Activity via Stimulation of AMP-Activated Protein Kinase in Human Endometriotic Stromal Cells

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Background

Cytochrome P450 aromatase (encoded by the CYP19A1/aromatase gene) plays a critical physiologic role in endometriosis. Metformin is known to suppress prostaglandin E2 (PGE2)-induced CYP19A1 messenger RNA (mRNA) expression in human endometriotic stromal cells (ESCs). However, the possible mechanism behind this suppression remains to be determined.

Methods

In this study, ESCs were cultured with metformin, PGE2, and adenosine monophosphate (AMP)-activated protein kinase (AMPK) inhibitors. Expression of CYP19A1 mRNA and aromatase activity were measured by quantitative polymerase chain reaction and aromatase activity assay, respectively. The binding of the cyclic AMP response element-binding (CREB) protein to CYP19A1 promoter II (PII) was assessed by chromatin immunoprecipitation assay.

Results

We demonstrated that metformin downregulated the expression of aromatase mRNA (32%) and activity (25%) stimulated by PGE2 (4.18-fold and 2.14-fold) in ESCs via stimulation of AMPK. Following PGE2 treatment, there was a marked increase in CREB binding to aromatase PII, while metformin attenuated the above-mentioned stimulation by 67%.

Conclusion

Metformin could inhibit PGE2-induced CYP19A1 mRNA expression and aromatase activity via AMPK activation and inhibition of CREB to CYP19A1 PII in human ESCs. The results of the present study suggest that metformin may have unique therapeutic potential as an antiendometriotic drug in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Olive DL, Schwartz LB. Endometriosis. N Engl J Med. 1993;328(24):1759–1769.

    CAS  PubMed  Google Scholar 

  2. Ryan IP, Taylor RN. Endometriosis and infertility: new concepts. Obstet Gynecol Surv. 1997;52(6):365–371.

    CAS  PubMed  Google Scholar 

  3. Kitawaki J, Noguchi T, Amatsu T, et al. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod. 1997;57(3):514–519.

    CAS  PubMed  Google Scholar 

  4. Zeitoun K, Takayama K, Michael MD, Bulun SE. Stimulation of aromatase P450 promoter (II) activity in endometriosis and its inhibition in endometrium are regulated by competitive binding of steroidogenic factor-1 and chicken ovalbumin upstream promoter transcription factor to the same cis-acting element. Mol Endocrinol. 1999;13(2):239–253.

    CAS  PubMed  Google Scholar 

  5. Bulun SE, Yang S, Fang Z, et al. Role of aromatase in endo-metrial disease. J Steroid Biochem Mol Biol. 2001;79(1–5):19–25.

    CAS  PubMed  Google Scholar 

  6. Fang Z, Yang S, Gurates B, et al. Genetic or enzymatic disruption of aromatase inhibits the growth of ectopic uterine tissue. J Clin Endocrinol Metab. 2002;87(7):3460–3466.

    CAS  PubMed  Google Scholar 

  7. Attar E, Bulun SE. Aromatase and other steroidogenic genes in endometriosis: translational aspects. Hum Reprod Update. 2006;12(1):49–56.

    CAS  PubMed  Google Scholar 

  8. Sebastian S, Bulun SE. A highly complex organization of the regulatory region of the human CYP19 (aromatase) gene revealed by the Human Genome Project. J Clin Endocrinol Metab. 2001;86(10):4600–4602.

    CAS  PubMed  Google Scholar 

  9. Noble LS, Takayama K, Zeitoun KM, et al. Prostaglandin E2 stimulates aromatase expression in endometriosis-derived stromal cells. J Clin Endocrinol Metab. 1997;82(2):600–606.

    CAS  PubMed  Google Scholar 

  10. Bulun SE, Lin Z, Imir G, et al. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev. 2005;57(3):359–383.

    CAS  PubMed  Google Scholar 

  11. Simpson ER, Mahendroo MS, Means GD, et al. Aromatase cyto-chrome P450, the enzyme responsible for estrogen biosynthesis. Endocr Rev. 1994;15(3):342–355.

    CAS  PubMed  Google Scholar 

  12. Sun HS, Hsiao KY, Hsu CC, Wu MH, Tsai SJ. Transactivation of steroidogenic acute regulatory protein in human endometriotic stromalcells is mediated by the prostaglandin EP2 receptor. Endocrinology. 2003;144(9):3934–3942.

    CAS  PubMed  Google Scholar 

  13. Michael MD, Michael LF, Simpson ER. A CRE-like sequence that binds CREB and contributes to cAMP-dependent regulation of the proximal promoter of the human aromatase P450 (CYP19) gene. Mol Cell Endocrinol. 1997;134(2):147–156.

    CAS  PubMed  Google Scholar 

  14. Hinshelwood MM, Michael MD, Simpson ER. The 5′-flanking region of the ovarian promoter of the bovine CYP19 gene contains a deletion in a cyclic adenosine 3′,5′-monophosphate-like responsive sequence. Endocrinology. 1997;138(9):3704–3710.

    CAS  PubMed  Google Scholar 

  15. Lord J, Wilkin T. Metformin in polycystic ovary syndrome. Curr Opin Obstet Gynecol. 2004;16(6):481–486.

    PubMed  Google Scholar 

  16. Lin HZ, Yang SQ, Chuckaree C, Kuhajda F, Ronnet G, Diehl AM. Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat Med. 2000;6(9):998–1003.

    CAS  PubMed  Google Scholar 

  17. Bergheim I, Luyendyk JP, Steele C, et al. Metformin prevents endotoxin-induced liver injury after partial hepatectomy. J Pharmacol Exp Ther. 2006;316(3):1053–1061.

    CAS  PubMed  Google Scholar 

  18. Isoda K, Young JL, Zirlik A, et al. Metformin inhibits proin-flammatory responses and nuclear factor-kappaB in human vascular wall cells. Arterioscler Thromb Vasc Biol. 2006;26(3):611–617.

    CAS  PubMed  Google Scholar 

  19. Attia GR, Rainey WE, Carr BR. Metformin directly inhibits androgen production in human thecal cells. Fertil Steril. 2001;76(3):517–524.

    CAS  PubMed  Google Scholar 

  20. Mansfield R, Galea R, Brincat M, Hole D, Mason H. Metformin has direct effects on human ovarian steroidogenesis. Fertil Steril. 2003;79(4):956–962.

    PubMed  Google Scholar 

  21. Oner G, Ozcelik B, Ozgun MT, Serin IS, Ozturk F, Basbug M. The effects of metformin and letrozole on endometriosis and comparison of the two treatment agents in a rat model. Hum Reprod. 2010;25(4):932–937.

    CAS  PubMed  Google Scholar 

  22. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108(8):1167–1174.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kahn BB, Alquier T, Carling D, Hardie DG. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25.

    CAS  PubMed  Google Scholar 

  24. Hardie DG. The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci. 2004;117(pt 23):5479–5487.

    CAS  PubMed  Google Scholar 

  25. Xu JN, Zeng C, Zhou Y, Peng C, Zhou YF, Xue Q. Metformin inhibits StAR expression in human endometrial stromal cells via AMPK-mediated disruption of CREB-CRTC2 complex formation. J Clin Endocrinol Metab. 2014;99(8):2795–2803.

    CAS  PubMed  Google Scholar 

  26. Rice S, Pellatt L, Ramanathan K, Whitehead SA, Mason HD. Metformin inhibits aromatase via an extracellular signal-regulated kinase-mediated pathway. Endocrinology. 2009;150(10):4794–4801.

    CAS  PubMed  Google Scholar 

  27. Ryan IP, Schriock ED, Taylor RN. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–649.

    CAS  PubMed  Google Scholar 

  28. Livak KJ, Schmittgen TD, Agarwal VR, Zhao Y, Carr BR, Bulun SE. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–408.

    CAS  PubMed  Google Scholar 

  29. Deb S, Zhou J, Amin SA, et al. A novel role of sodium butyrate in the regulation of cancer-associated aromatase promoters I.3 and II by disrupting a transcriptional complex in breast adipose fibroblasts. J Biol Chem. 2006;281(5):2585–2597.

    CAS  PubMed  Google Scholar 

  30. Rice S, Elia A, Jawad Z, Pellatt L, Mason HD. Metformin inhibits follicle-stimulating hormone (FSH) action in human granulosa cells: relevance to polycystic ovary syndrome. J Clin Endocrinol Metab. 2013;98(9):E1491–E1500.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Pavone ME, Bulun SE. Aromatase inhibitors for the treatment of endometriosis. Fertil Steril. 2012;98(6):1370–1379.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  PubMed  Google Scholar 

  33. Attar E, Tokunaga H, Imir G, et al. Prostaglandin E2 via steroidogenic factor-1 coordinately regulates transcription of steroidogenic genes necessary for estrogen synthesis in endometriosis. J Clin Endocrinol Metab. 2009;94(2):623–631.

    CAS  PubMed  Google Scholar 

  34. Noble LS, Simpson ER, Johns A, Bulun SE. Aromatase expression in endometriosis. J Clin Endocrinol Metab. 1996;81(1):174–179.

    CAS  PubMed  Google Scholar 

  35. Purohit A, Fusi L, Brosens J, Woo LW, Potter BV, Reed MJ. Inhibition of steroid sulphatase activity in endometriotic implants by 667 COUMATE: a potential new therapy. Hum Reprod. 2008;23(2):290–297.

    CAS  PubMed  Google Scholar 

  36. Maia H Jr, Haddad C, Casoy J. Correlation between aromatase expression in the eutopic endometrium of symptomatic patients and the presence of endometriosis. Int J Womens Health. 2012;4:61–65.

    PubMed  PubMed Central  Google Scholar 

  37. Colette S, Lousse JC, Defrere S, et al. Absence of aromatase protein and mRNA expression in endometriosis. Hum Reprod. Sep; 24(9):2133–2141.

  38. Delvoux B, Groothuis P, D’Hooghe T, Kyama C, Dunselman G, Romano A. Increased production of 17beta-estradiol in endometriosis lesions is the result of impaired metabolism. J Clin Endocrinol Metab. Mar 2009;94(3):876–883.

    CAS  PubMed  Google Scholar 

  39. Ferrero S, Remorgida V, Maganza C, et al. Aromatase and endo-metriosis: estrogens play a role. Ann N Y Acad Sci. May 2014;1317:17–23.

    CAS  PubMed  Google Scholar 

  40. Bulun SE, Utsunomiya H, Lin Z, et al. Steroidogenic factor-1 and endometriosis. Mol Cell Endocrinol. Mar 5 2009;300(1–2):104–108.

    CAS  PubMed  Google Scholar 

  41. Takemura Y, Osuga Y, Yoshino O, et al. Metformin suppresses interleukin (IL)-1beta-induced IL-8 production, aromatase activation, and proliferation of endometriotic stromal cells. J Clin Endo-crinol Metab. Aug 2007;92(8):3213–3218.

    CAS  PubMed  Google Scholar 

  42. Brown KA, Hunger NI, Docanto M, Simpson ER. Metformin inhibits aromatase expression in human breast adipose stromal cells via stimulation of AMP-activated protein kinase. Breast Cancer Res Treat. 2010;123(2):591–596.

    CAS  PubMed  Google Scholar 

  43. Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M. Expanding role of AMPK in endocrinology. Trends Endocrinol Metab. 2006;17(5):205–215.

    CAS  PubMed  Google Scholar 

  44. Tosca L, Solnais P, Ferre P, Foufelle F, Dupont J. Metformin-induced stimulation of adenosine 5′ -monophosphate-activated protein kinase (PRKA) impairs progesterone secretion in rat gran-ulosa cells. Biol Reprod. 2006;75(3):342–351.

    CAS  PubMed  Google Scholar 

  45. Tosca L, Chabrolle C, Uzbekova S, Dupont J. Effects of metformin on bovine granulosa cells steroidogenesis: possible involvement of adenosine 5′-monophosphate-activated protein kinase (AMPK). Biol Reprod. 2007;76(3):368–378.

    CAS  PubMed  Google Scholar 

  46. Tosca L, Uzbekova S, Chabrolle C, Dupont J. Possible role of 5′ AMP-activated protein kinase in the metformin-mediated arrest of bovine oocytes at the germinal vesicle stage during in vitro maturation. Biol Reprod. 2007;77(3):452–465.

    CAS  PubMed  Google Scholar 

  47. Brown KA, McInnes KJ, Hunger NI, Oakhill JS, Steinberg GR, Simpson ER. Subcellular localization of cyclic AMP-responsive element binding protein-regulated transcription coactivator 2 provides a link between obesity and breast cancer in postmenopausal women. Cancer Res. 2009;69(13):5392–5399.

    CAS  PubMed  Google Scholar 

  48. Takemura Y, Osuga Y, Harada M, et al. Serum adiponectin concentrations are decreased in women with endometriosis. Hum Reprod. 2005;20(12):3510–3513.

    CAS  PubMed  Google Scholar 

  49. Takemura Y, Osuga Y, Harada M, et al. Concentration of adipo-nectin in peritoneal fluid is decreased in women with endometriosis. Am J Reprod Immunol. 2005;54(4):217–221.

    CAS  PubMed  Google Scholar 

  50. Takemura Y, Osuga Y, Yamauchi T, et al. Expression of adipo-nectin receptors and its possible implication in the human endo-metrium. Endocrinology. 2006;147(7):3203–3210.

    CAS  PubMed  Google Scholar 

  51. Manna PR, Chandrala SP, King SR, et al. Molecular mechanisms of insulin-like growth factor-I mediated regulation of the steroidogenic acute regulatory protein in mouse leydig cells. Mol Endocrinol. 2006;20(2):362–378.

    CAS  PubMed  Google Scholar 

  52. Martinelle N, Holst M, Soder O, Svechnikov K. Extracellular signal-regulated kinases are involved in the acute activation of steroidogenesis in immature rat Leydig cells by human chorionic gonadotropin. Endocrinology. 2004;145(10):4629–4634.

    CAS  PubMed  Google Scholar 

  53. Eaton JL, Unno K, Caraveo M, Lu Z, Kim JJ. Increased AKT or MEK1/2 activity influences progesterone receptor levels and localization in endometriosis. J Clin Endocrinol Metab. 2013;98(12):E1871–E1879.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sirianni R, Chimento A, Malivindi R, Mazzitelli I, Ando S, Pezzi V. Insulin-like growth factor-I, regulating aromatase expression through steroidogenic factor 1, supports estrogen-dependent tumor Leydig cell proliferation. Cancer Res. 2007;67(17):8368–8377.

    CAS  PubMed  Google Scholar 

  55. Hunzicker-Dunn M, Maizels ET. FSH signaling pathways in immature granulosa cells that regulate target gene expression: branching out from protein kinase A. Cell Signal. 2006;18(9):1351–1359.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Conkright MD, Canettieri G, Screaton R, et al. TORCs: transducers of regulated CREB activity. Mol Cell. 2003;12(2):413–423.

    CAS  PubMed  Google Scholar 

  57. Iourgenko V, Zhang W, Mickanin C, et al. Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A. 2003;100(21):12147–12152.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Xue MD, PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xu, JN., Zeng, C. et al. Metformin Suppresses Prostaglandin E2-Induced Cytochrome P450 Aromatase Gene Expression and Activity via Stimulation of AMP-Activated Protein Kinase in Human Endometriotic Stromal Cells. Reprod. Sci. 22, 1162–1170 (2015). https://doi.org/10.1177/1933719115590664

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115590664

Keywords

Navigation