Skip to main content
Log in

Possible Role of α1-Antitrypsin in Endometriosis-Like Grafts From a Mouse Model of Endometriosis

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Previous study indicated that bleeding into the peritoneum may accelerate inflammatory response in endometriosis-like grafts in mice. To identify changes in protein levels in the grafts from mice that underwent unilateral ovariectomy (uOVX), which causes bleeding from ovarian arteries and vein, the grafts were generated by injecting a suspension of human endometrial cells in BALB/c nude female mice, and protein profile changes were compared with non-uOVX control mice. The level of α1-antitrypsin (α1-AT) decreased in grafts from nude mice that underwent uOVX. The levels of phosphorylated Akt, mammalian target of rapamycin, S6K, regulatory factors for cell survival, and of phosphorylated nuclear factor κB, an inflammatory mediator, were higher in endometriosis-like grafts from the uOVX group than from the control. The grafts were mostly comprised of stromal cells. The bioactivity of α1-AT was assessed by investigating cytokine expression in protease-activated receptor (PAR) 1/2 agonists-stimulated stromal cells. The PARs promoted the expression of interleukin 8 (IL-8), but treatment with α1-AT blocked IL-8 expression dose dependently. Knocking down α1-AT expression increased the constitutive IL-6, IL-8, and cyclooxygenase 2 expression as well as PAR1 agonist-stimulated IL-6 expression. These findings support the notion that decreased α1-AT protein in the grafts constituted with human endometrial cells in mice may have exacerbated inflammation in endometriosis-like grafts, suggesting the possible involvement of α1-AT in the pathophysiology of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giudice LC, Kao LC, Endometriosis. Lancet. 2004;364(9447):1789–1799.

    PubMed  Google Scholar 

  2. Bulun SE. Endometriosis. N Engl J Med. 2009;360(3):268–279.

    CAS  PubMed  Google Scholar 

  3. Vercellini P, Viganò P, Somigliana E, Fedele L. Endometriosis: pathogenesis and treatment. Nat Rev Endocrinol. 2013;10(5):261–275.

    PubMed  Google Scholar 

  4. Signorile PG, Baldi A. Endometriosis: new concepts in the patho-genesis. Int J Biochem Cell Biol. 2010;42(6):778–780.

    CAS  PubMed  Google Scholar 

  5. Shinohara A, Kutsukake M, Takahashi M, Kyo S, Tachikawa E, Tamura K. Protease-activated receptor-stimulated interleukin-6 expression in endometriosis-like lesions in an experimental mouse model of endometriosis. J Pharmacol Sci. 2010;119(1):40–51.

    Google Scholar 

  6. Kyo S, Nakamura M, Kiyono T, et al. Successful immortalization of endometrial glandular cells with normal structural and functional characteristics. Am J Pathol. 2003;163(6):2259–2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tamura K, Yoshie M, Hara T, Isaka K, Kogo H. Involvement of stathmin in proliferation and differentiation of immortalized human endometrial stromal cells. J Reprod Dev. 2007;53(3):525–533.

    CAS  PubMed  Google Scholar 

  8. Tamura K, Yoshie M, Nishi H, et al. Expression of stathmin in human uterus and decidualizating endometrial stromal cells. Reproduction. 2006;132(4):625–636.

    CAS  PubMed  Google Scholar 

  9. Tamura K, Yoshie M, Miyajima E, Kano M, Tachikawa E. Stathmin regulates hypoxia-inducible factor-1α expression through the mammalian target of rapamycin pathway in ovarian clear cell adenocarcinoma. ISRN Pharmacol. 2013;2013:279593. doi:10.1155/2013/279593.

    PubMed  PubMed Central  Google Scholar 

  10. Yoshie M, Miyajima E, Kyo S, Tamura K. Stathmin, a microtubule regulatory protein, is associated with hypoxia-inducible factor-1alpha levels in human endometrial and endothelial cells. Endocrinology. 2009;150(5):2413–2418.

    CAS  PubMed  Google Scholar 

  11. Hirota Y, Osuga Y, Hirata T, et al. Possible involvement of thrombin/protease-activated receptor 1 system in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 2005;90(6):3673–3679.

    CAS  PubMed  Google Scholar 

  12. Hirota Y, Osuga Y, Hirata T, et al. Evidence of the presence of protease-activated receptor 2 and its possible implication in remodeling of human endometrium. J Clin Endocrinol Metab. 2005; 90(3):1662–1669.

    CAS  PubMed  Google Scholar 

  13. Kawano Y, Furukawa Y, Kawano Y, Nasu K, Narahara H. Thrombin-induced chemokine production in endometrial stromal cells. Hum Reprod. 2011;26(12):407–413.

    CAS  PubMed  Google Scholar 

  14. Hunt JM, Tuder R. Alpha 1 anti-trypsin: one protein, many functions. Curr Mol Med. 2012;12(7):827–835.

    CAS  PubMed  Google Scholar 

  15. Marshall RJ, Braye SG. Immunohistochemical demonstration of alpha-1-antitrypsin and alpha-1-antichymotrypsin in normal human endometrium. Int J Gynecol Pathol. 1987;6(1):49–54.

    CAS  PubMed  Google Scholar 

  16. Parmar T, Gadkar-Sable S, Savardekar L, et al. Protein profiling of human endometrial tissues in the midsecretory and proliferative phases of the menstrual cycle. Fertil Steril. 2009;92(3):1091–1103.

    CAS  PubMed  Google Scholar 

  17. Voisin SN, Krakovska O, Matta A, et al. Identification of novel molecular targets for endometrial cancer using a drill-down LC–MS/MS approach with iTRAQ. PLoS One. 2011;6(1):e16352.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Meola J, Rosa e Silva JC, Dentillo DB, et al. Differentially expressed genes in eutopic and ectopic endometrium of women with endometriosis. Fertil Steril. 2010;93(6):1750–1773.

    CAS  PubMed  Google Scholar 

  19. Ferrero S, Gillott DJ, Remorgida V, Anserini P, Ragni N, Grudzinskas JG. Peritoneal fluid proteome in women with different ASRM stages of endometriosis. Gynecol Endocrinol. 2008;24(8):433–441.

    CAS  PubMed  Google Scholar 

  20. Ferrero S, Gillott DJ, Remorgida V, Anserini P, Ragni N, Grudzinskas JG. Proteomic analysis of peritoneal fluid in fertile and infertile women with endometriosis. J Reprod Med. 2009;54(1):32–40.

    CAS  PubMed  Google Scholar 

  21. Subramaniyam D, Zhou H, Liang M, Welte T, Mahadeva R, Janciauskiene S. Cholesterol rich lipid raft microdomains are gateway for acute phase protein, SERPINA1. Int J Biochem Cell Biol. 2010;42(9):1562–1570.

    CAS  PubMed  Google Scholar 

  22. Sepper R, Konttinen YT, Ingman T, Sorsa T. Presence, activities, and molecular forms of cathepsin G, elastase, alpha1-antitrypsin, and alpha 1-antichymotrypsin in bronchiectasis. J Clin Immunol. 1995;15(1):27–34.

    CAS  PubMed  Google Scholar 

  23. Cheung M, Testa JR. Diverse mechanisms of AKT pathway activation in human malignancy. Curr Cancer Drug Targets. 2013;13(3):234–244.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Labplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274–293.

    Google Scholar 

  25. Leconte M, Nicco C, Ngô C, et al. The mTOR/AKT inhibitor temsirolimus prevents deep infiltrating endometriosis in mice. Am J Pathol. 2011;179(2):880–889.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Ling J, Kumar R. Crosstalk between NFkB and glucocorticoid signaling: a potential target of breast cancer therapy. Cancer Lett. 2012;322(2):119–126.

    CAS  PubMed  Google Scholar 

  27. Agic A, Xu H, Finas D, Banz C, Diedrich K, Hornung D. Is endometriosis associated with systemic subclinical inflammation? Gynecol Obstet Invest. 2006;62(3):139–147.

    PubMed  Google Scholar 

  28. González-Ramos R, Defrère S, Devoto L. Nuclear factor-kappaB: a main regulator of inflammation and cell survival in endometriosis pathophysiology. Fertil Steril. 2012;98(3):520–528.

    PubMed  Google Scholar 

  29. Moriyuki K, Sekiguchi F, Matsubara K, Nishikawa H, Kawabata A. Proteinase-activated receptor-2-triggered prostaglandin E2 release, but not cyclooxygenase-2 upregulation, requires activation of the phosphatidylinositol 3-kinase/Akt/nuclear factor-kappaB pathway in human alveolar epithelial cells. J Pharmacol Sci. 2009;111(3):269–275.

    CAS  PubMed  Google Scholar 

  30. Velasco I, Acién P, Campos A, Acién MI, Ruiz-Maciá E. Interleukin-6 and other soluble factors in peritoneal fluid and endometriomas and their relation to pain and aromatase expression. J Reprod Immunol. 2010;84(2):199–205.

    CAS  PubMed  Google Scholar 

  31. Borrelli GM, Abrão MS, Mechsner S. Can chemokines be used as biomarkers for endometriosis? A systematic review. Hum Reprod. 2014;29(2):253–266.

    CAS  PubMed  Google Scholar 

  32. Portelli M, Pollacco J, Schembri-Wismayer P, Calleja-Agius J. The role of prostaglandin E2 in endometriosis [review]. Gynecol Endocrinol. 2012;28(2):134–138.

    PubMed  Google Scholar 

  33. Li MQ, Luo XZ, Meng YH, et al. CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway. Hum Reprod. 2012;27(7):2107–2116.

    CAS  PubMed  Google Scholar 

  34. Lousse JC, Colette DS, Langendonckt AV, Donnez J. Expression of eicosanoid biosynthetic and catabolic enzymes in peritoneal endometriosis. Hum Reprod. 2010;25(3):734–714.

    CAS  PubMed  Google Scholar 

  35. Ota H, Igarashi S, Sasaki M, Tanaka T. Distribution of cyclooxygenase-2 in eutopic and ectopic endometrium in endometriosis and adenomyosis. Hum Reprod. 2001;16(3):561–566.

    CAS  PubMed  Google Scholar 

  36. Al-Omari M, Korenbaum E, Ballmaier M, et al. Acute-phase protein α1-antitrypsin inhibits neutrophil calpain I and induces random migration. Mol Med. 2011;17(9–10):865–874.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. van Pel M, van Os R, Velders GA, et al. Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci USA. 2006;103(5):1469–1474.

    PubMed  PubMed Central  Google Scholar 

  38. Churg A, Wang X, Wang RD, Meixner SC, Pryzdial EL, Wright JL. Alpha1-antitrypsin suppresses TNF-alpha and MMP-12 production by cigarette smoke-stimulated macrophages. Am J Respir Cell Mol Biol. 2007;37(2):144–151.

    CAS  PubMed  Google Scholar 

  39. Bergin DA, Reeves EP, Meleady P, et al. α1-Antitrypsin regulates human neutrophil chemotaxis induced by soluble immune complexes and IL-8. J Clin Invest. 2010;120(12):4236–4250.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Tamura PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamura, K., Takashima, H., Fumoto, K. et al. Possible Role of α1-Antitrypsin in Endometriosis-Like Grafts From a Mouse Model of Endometriosis. Reprod. Sci. 22, 1088–1097 (2015). https://doi.org/10.1177/1933719115570901

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115570901

Keywords

Navigation