Skip to main content

Advertisement

Log in

Nicotinamide Adenine Dinucleotide Phosphate Oxidase Expression Is Differentially Regulated to Favor a Pro-oxidant State That Contributes to Postoperative Adhesion Development

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

We have previously reported that superoxide (O2•–) contributes to the development of postoperative adhesions. In this study, we determined whether O2•– generating nicotinamide adenine dinucleotide phosphate oxidase (NOX) is differentially expressed in normal peritoneal and adhesion fibroblasts and tissues. The NOX isoforms were measured utilizing Western blot, immunohistochemistry, high-performance liquid chromatography, and real-time reverse transcription polymerase chain reaction. Expression and activity of NOX were found to be significantly higher in adhesion tissues and cells than that in normal peritoneal tissues and cells (P < .05). Levels of NOX2, NOX4, NOX activating protein 1, DUOX1, p47phox, and p22phox messenger RNA increased in adhesion fibroblasts when compared to normal peritoneal and increased in response to hypoxia in normal peritoneal fibroblasts. Thus, adhesion fibroblasts are characterized by a unique NOX expression profile, which maintains a pro-oxidant state that may be responsible for the persistence of the adhesion phenotype. Decreasing the activity of NOX by targeting these isoforms may be beneficial for future therapeutic interventions of postoperative adhesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. El-Mowafi DM, Diamond MP. Are pelvic adhesions preventable? Surg Technol Int. 2003;11:222–235.

    PubMed  Google Scholar 

  2. Monk BJ, Berman ML, Montz FJ. Adhesions after extensive gynecologic surgery: clinical significance, etiology, and prevention. Am J Obstet Gynecol. 1994;170(5 pt 1):1396–1403.

    Article  CAS  PubMed  Google Scholar 

  3. Diamond MP, Daniell JF, Feste J, et al. Adhesion reformation and de novo adhesion formation after reproductive pelvic surgery. Fertil Steril. 1987;47(5):864–866.

    Article  CAS  PubMed  Google Scholar 

  4. Postoperative adhesion development after operative laparoscopy: evaluation at early second-look procedures. operative laparoscopy study group. Fertil Steril. 1991;55(4):700–704.

  5. Steege JF, Stout AL. Resolution of chronic pelvic pain after laparoscopic lysis of adhesions. Am J Obstet Gynecol. 1991; 165(2):278–281.

    Article  CAS  PubMed  Google Scholar 

  6. Saed GM, Zhang W, Diamond MP. Molecular characterization of fibroblasts isolated from human peritoneum and adhesions. Fertil Steril. 2001;75(4):763–768.

    Article  CAS  PubMed  Google Scholar 

  7. Saed GM, Diamond MP. Molecular characterization of postoperative adhesions: the adhesion phenotype. J Am Assoc Gynecol Laparosc. 2004;11(3):307–314.

    Article  PubMed  Google Scholar 

  8. Fletcher NM, Jiang ZL, Diamond MP, Abu-Soud HM, Saed GM. Hypoxia-generated superoxide induces the development of the adhesion phenotype. Free Radic Biol Med. 2008;45(4):530–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fruehauf JP, Meyskens FL Jr. Reactive oxygen species: a breath of life or death? Clin Cancer Res. 2007;13(3):789–794.

    Article  CAS  PubMed  Google Scholar 

  10. Inoue M, Sato EF, Nishikawa M, et al. Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem. 2003;10(23):2495–2505.

    Article  CAS  PubMed  Google Scholar 

  11. Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999;11(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  12. Linnane AW, Eastwood H. Cellular redox regulation and prooxidant signaling systems: a new perspective on the free radical theory of aging. Ann NY Acad Sci. 2006;1067:47–55.

    Article  CAS  PubMed  Google Scholar 

  13. Babior BM. NADPH oxidase: an update. Blood. 1999;93(5): 1464–1476.

    Article  CAS  PubMed  Google Scholar 

  14. Clark RA, Epperson TK, Valente AJ. Mechanisms of activation of NADPH oxidases. Jpn J Infect Dis. 2004;57(5):S22–S23.

    PubMed  Google Scholar 

  15. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev. 2007;87(1):245–313.

    Article  CAS  PubMed  Google Scholar 

  16. Saed GM, Diamond MP. Differential expression of alpha smooth muscle cell actin in human fibroblasts isolated from intraperitoneal adhesions and normal peritoneal tissues. Fertil Steril. 2004;82 suppl 3:1188–1192.

    Article  CAS  PubMed  Google Scholar 

  17. Fletcher NM, Saed MG, Abu-Soud HM, Al-Hendy A, Diamond MP, Saed GM. Uterine fibroids are characterized by an impaired antioxidant cellular system: potential role of hypoxia in the pathophysiology of uterine fibroids. J Assist Reprod Genet. 2013;30(7):969–974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiang Z, Fletcher NM, Ali-Fehmi R, et al. Modulation of redox signaling promotes apoptosis in epithelial ovarian cancer cells. Gynecol Oncol. 2011;122(2):418–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paavilainen L, Edvinsson A, Asplund A, et al. The impact of tissue fixatives on morphology and antibody-based protein profiling in tissues and cells. J Histochem Cytochem. 2010;58(3):237–246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. White JC, Jiang ZL, Diamond MP, Saed GM. Macrophages induce the adhesion phenotype in normal peritoneal fibroblasts. Fertil Steril. 2011;96(3):758–763.e3.

    Article  CAS  PubMed  Google Scholar 

  21. Laurindo FR, Fernandes DC, Santos CX. Assessment of superoxide production and NADPH oxidase activity by HPLC analysis of dihydroethidium oxidation products. Methods Enzymol. 2008; 441:237–260.

    Article  CAS  PubMed  Google Scholar 

  22. Fernandes DC, Wosniak J Jr, Pescatore LA, et al. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol. 2007;292(1):C413–C422.

    Article  CAS  PubMed  Google Scholar 

  23. Diegelmann RF, Evans MC. Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci. 2004;9: 283–289.

    Article  CAS  PubMed  Google Scholar 

  24. Alpay Z, Saed GM, Diamond MP. Postoperative adhesions: from formation to prevention. Semin Reprod Med. 2008;26(4):313–321.

    Article  CAS  PubMed  Google Scholar 

  25. Saed GM, Diamond MP. Apoptosis and proliferation of human peritoneal fibroblasts in response to hypoxia. Fertil Steril. 2002; 78(1):137–143.

    Article  PubMed  Google Scholar 

  26. Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM. S-nitrosylation of caspase-3 is the mechanism by which adhesion fibroblasts manifest lower apoptosis. Wound Repair Regen. 2009; 17(2):224–229.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Saed GM, Jiang Z, Diamond MP, Abu-Soud HM. The role of myeloperoxidase in the pathogenesis of postoperative adhesions. Wound Repair Regen. 2009;17(4):531–539.

    Article  PubMed  Google Scholar 

  28. Saed GM, Jiang ZL, Fletcher NM, Al Arab A, Diamond MP, Abu-Soud HM. Exposure to polychlorinated biphenyls enhances lipid peroxidation in human normal peritoneal and adhesion fibroblasts: a potential role for myeloperoxidase. Free Radic Biol Med. 2010;48(6):845–850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care. 2008;31 suppl 2:S170–S180.

    Article  CAS  PubMed  Google Scholar 

  30. Valencia A, Sapp E, Kimm JS, et al. Elevated NADPH oxidase activity contributes to oxidative stress and cell death in Huntington’s disease. Hum Mol Genet. 2013;22(6):1112–1131.

    Article  CAS  PubMed  Google Scholar 

  31. Adams V, Linke A, Kränkel N, et al. Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation. 2005;111(5): 555–562.

    Article  CAS  PubMed  Google Scholar 

  32. Cai H, Griendling KK, Harrison DG. The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol Sci. 2003;24(9):471–478.

    Article  CAS  PubMed  Google Scholar 

  33. Dutta S, Rittinger K. Regulation of NOXO1 activity through reversible interactions with p22 and NOXA1. PLoS One. 2010; 5(5):e10478.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Rigutto S, Hoste C, Grasberger H, et al. Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by camp-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem, 2009;284(11):6725–6734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Suh YA, Arnold RS, Lassegue B, et al. Cell transformation by the superoxide-generating oxidase Mox1. Nature. 1999;401(6748): 79–82.

    Article  CAS  PubMed  Google Scholar 

  36. Arnold RS, Shi J, Murad E, et al. Hydrogen peroxide mediates the cell growth and transformation caused by the mitogenic oxidase Nox1. Proc Natl Acad Sci USA. 2001;98(10):5550–5555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weinberg F, Chandel NS. Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci. 2009;66(23): 3663–3673.

    Article  CAS  PubMed  Google Scholar 

  38. Li S, Tabar SS, Malec V, et al. NOX4 regulates ROS levels under normoxic and hypoxic conditions, triggers proliferation, and inhibits apoptosis in pulmonary artery adventitial fibroblasts. Antioxid Redox Signal. 2008;10(10):1687–1698.

    Article  CAS  PubMed  Google Scholar 

  39. Diamond MP, El-Hammady E, Munkarah A, Bieber EJ, Saed G. Modulation of the expression of vascular endothelial growth factor in human fibroblasts. Fertil Steril. 2005;83(2):405–409.

    Article  CAS  PubMed  Google Scholar 

  40. Jiang ZL, Fletcher NM, Diamond MP, Abu-Soud HM, Saed GM. Hypoxia regulates iNOS expression in human normal peritoneal and adhesion fibroblasts through nuclear factor kappa B activation mechanism. Fertil Steril. 2009;91(2):616–621.

    Article  CAS  PubMed  Google Scholar 

  41. Saed GM, Abu-Soud HM, Diamond MP. Role of nitric oxide in apoptosis of human peritoneal and adhesion fibroblasts after hypoxia. Fertil Steril. 2004;82 suppl 3:1198–1205.

    Article  CAS  PubMed  Google Scholar 

  42. Saed GM, Diamond MP. Hypoxia-induced irreversible up-regulation of type I collagen and transforming growth factor-betal in human peritoneal fibroblasts. Fertil Steril. 2002;78(1): 144–147.

    Article  PubMed  Google Scholar 

  43. Saed GM, Galijasevic S, Diamond MP, Abu-Soud HM. Measurement of oxygen and nitric oxide levels in vitro and in vivo: relationship to postoperative adhesions. Fertil Steril. 2005;84(1): 235–238.

    Article  CAS  PubMed  Google Scholar 

  44. Saed GM, Munkarah AR, Abu-Soud HM, Diamond MP. Hypoxia upregulates cyclooxygenase-2 and prostaglandin E(2) levels in human peritoneal fibroblasts. Fertil Steril. 2005;83 suppl 1: 1216–1219.

    Article  CAS  PubMed  Google Scholar 

  45. Saed GM, Zhang W, Chegini N, Holmdahl L, Diamond MP. Transforming growth factor beta isoforms production by human peritoneal mesothelial cells after exposure to hypoxia. Am J Reprod Immunol. 2000;43(5):285–291.

    Article  CAS  PubMed  Google Scholar 

  46. Saed GM, Zhao M, Diamond MP, Abu-Soud HM. Regulation of inducible nitric oxide synthase in post-operative adhesions. Hum Reprod. 2006;21(6):1605–1611.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan M. Saed PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fletcher, N.M., Abuanzeh, S., Saed, M.G. et al. Nicotinamide Adenine Dinucleotide Phosphate Oxidase Expression Is Differentially Regulated to Favor a Pro-oxidant State That Contributes to Postoperative Adhesion Development. Reprod. Sci. 21, 1050–1059 (2014). https://doi.org/10.1177/1933719114522524

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719114522524

Keywords

Navigation