Skip to main content

Advertisement

Log in

The Role of Oxidative Stress in the Development of Cisplatin Resistance in Epithelial Ovarian Cancer

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

To investigate the role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer (EOC).

Methods

Two parent EOC cell lines (MDAH-2774 and SKOV-3) and their chemoresistant counterparts (cisplatin, 50 µmol/L) were used. Total RNA was extracted and subjected to real-time reverse transcriptase polymerase chain reaction to evaluate the expression of glutathione reductase (GSR) and inducible nitric oxide synthase (iNOS), as well as nitrate/nitrite levels. Analysis of variance was used for main effects and Tukey for post hoc analysis at P < .05 for statistical significance.

Results

Both cisplatin resistant cell lines displayed a significant decrease in GSR messenger RNA (mRNA) levels and activity (P < .01). As compared to sensitive controls, nitrate/nitrite levels were significantly higher in SKOV-3 cisplatin resistant cells while iNOS mRNA levels were significantly higher in MDAH-2774 cisplatin resistant cells (P < .05).

Conclusion

Our data suggest that the development of cisplatin resistance tilts the balance toward a pro-oxidant state in EOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin. 2013;63(1):11–30.

    Article  Google Scholar 

  2. Markman M, Rothman R, Hakes T, et al. Second-line platinum therapy in patients with ovarian cancer previously treated with cisplatin. J Clin Oncol. 1991;9(3):389–393.

    Article  CAS  Google Scholar 

  3. Diplock AT, Rice-Evans CA, Burdon RH. Is there a significant role for lipid peroxidation in the causation of malignancy and for antioxidants in cancer prevention? Cancer Res. 1994;54(7 suppl):1952s–1956s.

    Google Scholar 

  4. Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal. 1999;11(1):1–14.

    Article  CAS  Google Scholar 

  5. Jiang Z, Fletcher NM, Ali-Fehmi R, et al. Modulation of redox signaling promotes apoptosis in epithelial ovarian cancer cells. Gynecol Oncol. 2011;122(2):418–423.

    Article  CAS  Google Scholar 

  6. Malone JM, Saed GM, Diamond MP, Sokol RJ, Munkarah AR. The effects of the inhibition of inducible nitric oxide synthase on angiogenesis of epithelial ovarian cancer. Am J Obstet Gynecol. 2006;194(4):1110–1116; discussion 1116–1118.

    Article  CAS  Google Scholar 

  7. Dvoriantchikova G, Grant J, Santos AR, Hernandez E, Ivanov D. Neuronal NAD(P)H oxidases contribute to ROS production and mediate RGC death after ischemia. Invest Ophthalmol Vis Sci. 2012;53(6):2823–2830.

    Article  CAS  Google Scholar 

  8. Montezano AC, Touyz RM. Molecular mechanisms of hypertension-reactive oxygen species and antioxidants: a basic science update for the clinician. Can J Cardiol. 2012;28(3):288–295.

    Article  CAS  Google Scholar 

  9. Valko M, Morris H, Cronin MT. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208.

    Article  CAS  Google Scholar 

  10. Evans MD, Cooke MS. Factors contributing to the outcome of oxidative damage to nucleic acids. Bioessays. 2004;26(5):533–542.

    Article  CAS  Google Scholar 

  11. Halliwell B. Oxidative stress and cancer: have we moved forward? Biochem J. 2007;401(1):1–11.

    Article  CAS  Google Scholar 

  12. Warburg O. On the origin of cancer cells. Science. 1956; 123(3191):309–314.

    Article  CAS  Google Scholar 

  13. Lopez-Lazaro M. The warburg effect: why and how do cancer cells activate glycolysis in the presence of oxygen? Anticancer Agents Med Chem. 2008;8(3):305–312.

    Article  CAS  Google Scholar 

  14. Saed GM, Ali-Fehmi R, Jiang ZL, et al. Myeloperoxidase serves as a redox switch that regulates apoptosis in epithelial ovarian cancer. Gynecol Oncol. 2010;116(2):276–281.

    Article  CAS  Google Scholar 

  15. Fletcher NM, Jiang Z, Ali-Fehmi R, et al. Myeloperoxidase and free iron levels: potential biomarkers for early detection and prognosis of ovarian cancer. Cancer Biomark. 2011;10(6):267–275.

    Article  CAS  Google Scholar 

  16. Akimaru K, Kuo MT, Furuta K, Suzuki M, Noyori R, Ishikawa T. Induction of MRP/GS-X pump and cellular resistance to anticancer prostaglandins. Cytotechnology. 1996;19(3):221–227.

    Article  CAS  Google Scholar 

  17. Fujii R, Mutoh M, Sumizawa T, Chen ZS, Yoshimura A, Akiyama S. Adenosine triphosphate-dependent transport of leukotriene C4 by membrane vesicles prepared from cisplatin-resistant human epidermoid carcinoma tumor cells. J Natl Cancer Inst. 1994;86(23):1781–1784.

    Article  CAS  Google Scholar 

  18. Ishikawa T, Ali-Osman F. Glutathione-associated cis-diamminedichloroplatinum(II) metabolism and ATP-dependent efflux from leukemia cells. Molecular characterization of glutathione–platinum complex and its biological significance. J Biol Chem. 1993;268(27):20116–20125.

    CAS  PubMed  Google Scholar 

  19. Armant DR, Kilburn BA, Petkova A, et al. Human trophoblast survival at low oxygen concentrations requires metalloproteinase-mediated shedding of heparin-binding EGF-like growth factor. Development. 2006;133(4):751–759.

    Article  CAS  Google Scholar 

  20. Han YH, Moon HJ, You BR, Kim SZ, Kim SH, Park WH. The effects of N-acetyl cysteine on the MG132 proteasome inhibitor-treated lung cancer cells in relation to cell growth, reactive oxygen species and glutathione. Int J Mol Med. 2010;25(4):657–662.

    CAS  PubMed  Google Scholar 

  21. Chow HH, Hakim IA, Vining DR, et al. Modulation of human glutathione s-transferases by polyphenon e intervention. Cancer Epidemiol Biomarkers Prev. 2007;16(8):1662–1666.

    Article  CAS  Google Scholar 

  22. Balendiran GK, Dabur R, Fraser D. The role of glutathione in cancer. Cell Biochem Funct. 2004;22(6):343–352.

    Article  CAS  Google Scholar 

  23. Batist G, Behrens BC, Makuch R, et al. Serial determinations of glutathione levels and glutathione-related enzyme activities in human tumor cells in vitro. Biochem Pharmacol. 1986;35(13):2257–2259.

    Article  CAS  Google Scholar 

  24. Suzuki T, Nishio K, Tanabe S. The MRP family and anticancer drug metabolism. Curr Drug Metab. 2001;2(4):367–377.

    Article  CAS  Google Scholar 

  25. de Bittencourt Junior PI, Curi R, Williams JF. Glutathione metabolism and glutathione S-conjugate export ATPase (MRP1/GS-X pump) activity in cancer. I. Differential expression in human cancer cell lines. Biochem Mol Biol Int. 1998;45(6):1227–1241.

    PubMed  Google Scholar 

  26. Suthanthiran M, Anderson ME, Sharma VK, Meister A. Glutathione regulates activation-dependent DNA synthesis in highly purified normal human T lymphocytes stimulated via the CD2 and CD3 antigens. Proc Natl Acad Sci USA. 1990;87(9): 3343–3347.

    Article  CAS  Google Scholar 

  27. Multhoff G, Meier T, Botzler C, et al. Differential effects of ifosfamide on the capacity of cytotoxic T lymphocytes and natural killer cells to lyse their target cells correlate with intracellular glutathione levels. Blood. 1995;85(8):2124–2131.

    Article  CAS  Google Scholar 

  28. Droge W, Schulze-Osthoff K, Mihm S, et al. Functions of glutathione and glutathione disulfide in immunology and immunopathology. FASEB J. 1994;8(14):1131–1138.

    Article  CAS  Google Scholar 

  29. Forstermann U, Gath I, Schwarz P, Closs EI, Kleinert H. Isoforms of nitric oxide synthase. Properties, cellular distribution and expressional control. Biochem Pharmacol. 1995;50(9): 1321–1332.

    Article  CAS  Google Scholar 

  30. Fiscus RR. Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neuro-signals. 2002;11(4):175–190.

    Article  CAS  Google Scholar 

  31. Fiscus RR, Yuen JP, Chan SL, Kwong JH, Chew SB. Nitric oxide and cyclic GMP as pro- and anti-apoptotic agents. J Card Surg. 2002;17(4):336–339.

    Article  Google Scholar 

  32. Wink DA, Vodovotz Y, Cook JA, et al. The role of nitric oxide chemistry in cancer treatment. Biochemistry (Mosc). 1998; 63(7):802–809.

    CAS  Google Scholar 

  33. Leung EL, Fraser M, Fiscus RR, Tsang BK. Cisplatin alters nitric oxide synthase levels in human ovarian cancer cells: involvement in p53 regulation and cisplatin resistance. Br J Cancer. 2008; 98(11):1803–1809.

    Article  CAS  Google Scholar 

  34. Fetz V, Bier C, Habtemichael N, et al. Inducible NO synthase confers chemoresistance in head and neck cancer by modulating survivin. Int J Cancer. 2009;124(9):2033–2041.

    Article  CAS  Google Scholar 

  35. Liu J, Cristea MC, Frankel P, et al. Clinical characteristics and outcomes of BRCA-associated ovarian cancer: genotype and survival. Cancer Genet. 2012;205(1–2):34–41.

    Article  CAS  Google Scholar 

  36. Ali AY, Farrand L, Kim JY, et al. Molecular determinants of ovarian cancer chemoresistance: new insights into an old conundrum. Ann N Y Acad Sci. 2012;1271:58–67.

    Article  CAS  Google Scholar 

  37. Kalinina EV, Berezov TT, Shtil AA, et al. Expression of peroxiredoxin 1, 2, 3, and 6 genes in cancer cells during drug resistance formation. Bull Exp Biol Med. 2012;153(6):878–881.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghassan M. Saed PhD.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belotte, J., Fletcher, N.M., Awonuga, A.O. et al. The Role of Oxidative Stress in the Development of Cisplatin Resistance in Epithelial Ovarian Cancer. Reprod. Sci. 21, 503–508 (2014). https://doi.org/10.1177/1933719113503403

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719113503403

Keywords

Navigation