Skip to main content

Advertisement

Log in

Mid-Gestation Ovine Cardiomyocytes Are Vulnerable to Mitotic Suppression by Thyroid Hormone

  • Original Articles
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Circulating fetal 3,3′,5-tri-iodo-l-thyronine (T3 ) is maintained at very low levels until a dramatic prepartum surge. 3,3′,5-Tri-iodo-l-thyronine inhibits serum-stimulated proliferation in near-term ovine cardiomyocytes, but it is not known whether midgestation myocytes are also inhibited. Because early cessation of cardiomyocyte mitosis would result in an underendowed heart, we hypothesized that 0.67 gestation (100 of 145 days gestation) ovine cardiomyocytes would be insensitive to suppressive growth effects of T3 . These younger cardiomyocytes were grown with T3 in 10% serum-enriched media for 24 hours. Physiological (0.37, 0.75, and 1.5 nmol/L) concentrations of T3 dramatically suppressed mitotic activity in cardiomyocytes (P < .001). 3,3′,5-Tri-iodo-l-thyronine stimulated phosphorylation of extracellular signal-regulated kinase and AKT (also known as Protein Kinase B [PKB]) signaling pathways. Nevertheless, the protein content of the cell cycle suppressor, p21, increased 2-fold (P < .05), and promoter, cyclin D1, decreased by 50%. Contrary to our hypothesis, elevated levels of T3 powerfully inhibit proliferation of midgestation fetal cardiomyocytes. Thus, midgestation maternal hyperthyroidism might lead to an underendowed fetal myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonker SS, Zhang L, Louey S, Giraud GD, Thornburg KL, Faber JJ. Myocyte enlargement, differentiation, and proliferation kinetics in the fetal sheep heart. J Appl Physiol. 2007;102(3):1130–1142.

    Article  PubMed  Google Scholar 

  2. Rakusan K. Cardiac growth, maturation, and aging. In: Zak R, ed. Growth of the Heart in Health and Disease. New York, NY: Raven Press; 1984:131–164.

    Google Scholar 

  3. Clubb FJ Jr, Bishop SP. Formation of binucleated myocardial cells in the neonatal rat. An index for growth hypertrophy. Lab Invest. 1984;50(5):571–577.

    PubMed  Google Scholar 

  4. Barbera A, Giraud GD, Reller MD, Maylie J, Morton MJ, Thornburg KL. Right ventricular systolic pressure load alters myocyte maturation in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2000;279(4):R1157–R1164.

    Article  PubMed  CAS  Google Scholar 

  5. Soonpaa MH, Kim KK, Pajak L, Franklin M, Field LJ. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 1996;271(5 pt 2):H2183–H2189.

    PubMed  CAS  Google Scholar 

  6. Smolich JJ, Walker AM, Campbell GR, Adamson TM. Left and right ventricular myocardial morphometry in fetal, neonatal, and adult sheep. Am J Physiol. 1989;257(1 pt 2):H1–H9.

    PubMed  CAS  Google Scholar 

  7. Bugaisky L, Zak R. Cellular growth of cardiac muscle after birth. Tex Rep Biol Med. 1979;39:123–138.

    PubMed  CAS  Google Scholar 

  8. Zak R, Kizu A, Bugaisky L. Cardiac hypertrophy: its characteristics as a growth process. Am J Cardiol. 1979;44(5):941–946.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005;12(1):2–13.

    Article  PubMed  Google Scholar 

  10. Sundgren NC, Giraud GD, Schultz JM, Lasarev MR, Stork PJ, Thornburg KL. Extracellular signal-regulated kinase and phosphoinositol-3 kinase mediate IGF-1 induced proliferation of fetal sheep cardiomyocytes. Am J Physiol Regul Integr Comp Physiol. 2003;285(6):R1481–R1489.

    Article  PubMed  CAS  Google Scholar 

  11. Sundgren NC, Giraud GD, Stork PJ, Maylie JG, Thornburg KL. Angiotensin II stimulates hyperplasia but not hypertrophy in immature ovine cardiomyocytes. J Physiol. 2003;548(pt 3): 881–891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Giraud GD, Louey S, Jonker S, Schultz J, Thornburg KL. Cortisol stimulates cell cycle activity in the cardiomyocyte of the sheep fetus. Endocrinology. 2006;147(8):3643–3649.

    Article  PubMed  CAS  Google Scholar 

  13. O’Tierney PF, Chattergoon NN, Louey S, Giraud GD, Thornburg KL. Atrial Natriuretic Peptide Inhibits Angiotensin II-Stimulated Proliferation in Fetal Cardiomyocytes. J Physiol. 2010;558(pt 15): 2879–2889.

    Article  CAS  Google Scholar 

  14. Chattergoon NN, Giraud GD, Thornburg KL. Thyroid hormone inhibits proliferation of fetal cardiac myocytes in vitro. J Endocrinol. 2007;192(2):R1–R8.

    Article  PubMed  CAS  Google Scholar 

  15. Louey S, Jonker SS, Giraud GD, Thornburg KL. Placental insufficiency decreases cell cycle activity and terminal maturation in fetal sheep cardiomyocytes. J Physiol. 2007;580(pt 2): 639–648.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Hopkins PS, Thorburn GD. The effects of foetal thyroidectomy on the development of the ovine foetus. J Endocrinol. 1972;54(1): 55–66.

    Article  PubMed  CAS  Google Scholar 

  17. Thorburn GD, Hopkins PS. Thyroid function in the foetal lamb. In: Comline KS, Cross KW, Dawes GS, Nathanielsz PW, eds. Foetal and Neonatal Physiology: Proceedings of the Sir Joseph Barcroft Centenary Symposium Held at the Physiological Laboratory Cambridge. Texas: Cambridge University Press; 1973:488–507.

    Google Scholar 

  18. Chopra IJ, Carlson HE, Solomon DH. Comparison of inhibitory effects of 3,5,3’-triiodothyronine (T3), thyroxine (T4), 3,3,’,5’-triiodothyronine (rT3), and 3,3’-diiodothyronine (T2) on thyrotropin-releasing hormone-induced release of thyrotropin in the rat in vitro. Endocrinology. 1978;103(2):393–402.

    Article  PubMed  CAS  Google Scholar 

  19. Polk DH. Thyroid hormone metabolism during development. Reprod Fertil Dev. 1995;7(3):469–477.

    Article  PubMed  CAS  Google Scholar 

  20. Fowden AL, Mundy L, Silver M. Developmental regulation of glucogenesis in the sheep fetus during late gestation. J Physiol. 1998;508(pt 3):937–947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Forhead AJ, Curtis K, Kaptein E, Visser TJ, Fowden AL. Developmental control of iodothyronine deiodinases by cortisol in the ovine fetus and placenta near term. Endocrinology. 2006; 147(12):5988–5994.

    Article  PubMed  CAS  Google Scholar 

  22. Thomas AL, Krane EJ, Nathanielsz PW. Changes in the fetal thyroid axis after induction of premature parturition by low dose continuous intravascular cortisol infusion to the fetal sheep at 130 days of gestation. Endocrinology. 1978;103(1):17–23.

    Article  PubMed  CAS  Google Scholar 

  23. Chattergoon NN, Giraud GD, Louey S, Stork P, Fowden AL, Thornburg KL. Thyroid hormone drives fetal cardiomyocyte maturation. FASEB J. 2012;26(1):397–408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chan SY, Vasilopoulou E, Kilby MD. The role of the placenta in thyroid hormone delivery to the fetus. Nat Clin Pract Endocrinol Metab. 2009;5(1):45–54.

    Article  PubMed  CAS  Google Scholar 

  25. Higuchi R, Kumagai T, Kobayashi M, Minami T, Koyama H, Ishii Y. Short-term hyperthyroidism followed by transient pituitary hypothyroidism in a very low birth weight infant born to a mother with uncontrolled Graves’ disease. Pediatrics. 2001; 107(4):E57.

    Article  PubMed  CAS  Google Scholar 

  26. Calvo R, Obregon MJ, Escobar DR, Morreale DE. The rat placenta and the transfer of thyroid hormones from the mother to the fetus. Effects of maternal thyroid status. Endocrinology. 1992;131(1):357–365.

    Article  PubMed  CAS  Google Scholar 

  27. Kilby MD, Barber K, Hobbs E, Franklyn JA. Thyroid hormone action in the placenta. Placenta. 2005;26(2–3):105–113.

    Article  PubMed  CAS  Google Scholar 

  28. Chan SY, Franklyn JA, Pemberton HN, et al. Monocarboxylate transporter 8 expression in the human placenta: the effects of severe intrauterine growth restriction. J Endocrinol. 2006; 189(3):465–471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Jonker SS, Faber JJ, Anderson DF, Thornburg KL, Louey S, Giraud GD. Sequential growth of fetal sheep cardiac myocytes in response to simultaneous arterial and venous hypertension. Am J Physiol Regul Integr Comp Physiol. 2007;292(2):R913–R919.

    Article  PubMed  CAS  Google Scholar 

  30. Burton PB, Raff MC, Kerr P, Yacoub MH, Barton PJ. An intrinsic timer that controls cell-cycle withdrawal in cultured cardiac myocytes. Dev Biol. 1999;216(2):659–670.

    Article  PubMed  CAS  Google Scholar 

  31. Kuzman JA, Gerdes AM, Kobayashi S, Liang Q. Thyroid hormone activates Akt and prevents serum starvation-induced cell death in neonatal rat cardiomyocytes. J Mol Cell Cardiol. 2005; 39(5):841–844.

    Article  PubMed  CAS  Google Scholar 

  32. Wu S, Polk D, Wong S, Reviczky A, Vu R, Fisher DA. Thyroxine sulfate is a major thyroid hormone metabolite and a potential intermediate in the monodeiodination pathways in fetal sheep. Endocrinology. 1992;131(4):1751–1756.

    Article  PubMed  CAS  Google Scholar 

  33. Polk DH, Wu SY, Wright C, Reviczky AL, Fisher DA. Ontogeny of thyroid hormone effect on tissue 5’-monodeiodinase activity in fetal sheep. Am J Physiol. 1988;254(3 pt 1):E337–E341.

    PubMed  CAS  Google Scholar 

  34. Lin HY, Sun M, Tang HY, et al. L-Thyroxine vs. 3,5,3’-triiodo-L-thyronine and cell proliferation: activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase. Am J Physiol Cell Physiol. 2009;296(5):C980–C991.

    Article  PubMed  CAS  Google Scholar 

  35. Hu LW, Benvenuti LA, Liberti EA, Carneiro-Ramos MS, Barreto-Chaves ML. Thyroxine-induced cardiac hypertrophy: influence of adrenergic nervous system versus renin-angiotensin system on myocyte remodeling. Am J Physiol Regul Integr Comp Physiol. 2003;285(6):R1473–R1480.

    Article  PubMed  CAS  Google Scholar 

  36. Polk DH, Callegari CC, Newnham J, et al. Effect of fetal thyroidectomy on newborn thermogenesis in lambs. Pediatr Res. 1987; 21(5):453–457.

    Article  PubMed  CAS  Google Scholar 

  37. Matsui T, Nagoshi T, Rosenzweig A. Akt and PI 3-kinase signaling in cardiomyocyte hypertrophy and survival. Cell Cycle. 2003; 2(3):220–223.

    Article  PubMed  CAS  Google Scholar 

  38. Kato T, Muraski J, Chen Y, et al. Atrial natriuretic peptide promotes cardiomyocyte survival by cGMP-dependent nuclear accumulation of zyxin and Akt. J Clin Invest. 2005;115(10): 2716–2730.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Chen D, Heath V, O’Garra A, Johnston J, McMahon M. Sustained activation of the raf-MEK-ERK pathway elicits cytokine unresponsiveness in T cells. J Immunol. 1999;163(11):5796–5805.

    PubMed  CAS  Google Scholar 

  40. Dangi S, Chen FM, Shapiro P. Activation of extracellular signal-regulated kinase (ERK) in G2 phase delays mitotic entry through p21CIP1. Cell Prolif. 2006;39(4):261–279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Haddow JE, Palomaki GE, Allan WC, et al. Maternal thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. N Engl J Med. 1999;341(8):549–555.

    Article  PubMed  CAS  Google Scholar 

  42. Niswander KR, Gordon M. The Collaborative Perinatal Study of the National Institute of Neurological Disease and Stroke: The Women and Their Babies. Report. Philadelphia, PA: W.B. Saunders Company; 1972: 246–249.

    Google Scholar 

  43. Seely BL, Burrow GN. Thyroid disease and pregnancy. In: Creasy RK, Resnik R, eds. Maternal-Fetal Medicine: Principles and Practice. Philadelphia, PA: W.B. Saunders Company; 1994.

    Google Scholar 

  44. Hume R, Simpson J, Delahunty C, et al. Human fetal and cord serum thyroid hormones: developmental trends and interrelationships. J Clin Endocrinol Metab. 2004;89(8):4097–4103.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kent L. Thornburg PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattergoon, N.N., Louey, S., Stork, P. et al. Mid-Gestation Ovine Cardiomyocytes Are Vulnerable to Mitotic Suppression by Thyroid Hormone. Reprod. Sci. 19, 642–649 (2012). https://doi.org/10.1177/1933719111432860

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719111432860

Keywords

Navigation