Skip to main content

Advertisement

Log in

Role of Protein Kinase Cα in Regulation of [Ca2+]I and Force in Human Myometrium

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Recent findings implicate protein kinase C in regulation of contraction of uterine muscle (myometrium). However, the role of protein kinase C isoforms in myometrial contraction remains uncertain. Therefore, this study examined protein kinase Cα’s role in regulation of contraction and intracellular calcium concentration ([Ca2+]I) of myometrium from term pregnant women. The authors demonstrated that protein kinase Cα inhibitor Go6976 decreased the amplitude of potassium chloride—induced myometrial contractions in a time-dependent manner. The treatment of the myometrial strips with protein kinase Cα—specific antisense oligodeoxynucleotides decreased the potassium chloride—induced contraction and [Ca2+]I response to 39.3% ± 6.8% and 50.0% ± 3.3%, respectively, compared to control. The sense oligonucleotides treatment did not significantly change the potassium chloride responses (89.8% ± 6.8% and 93.9% ± 4.5% of the control for the contraction and [Ca2+]I, respectively). These data, coupled with the observation that protein kinase Cα levels are elevated in the pregnant myometrium, suggest the involvement of protein kinase Cα in regulation of human uterine contraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. March of Dimes Web site. Prematurity Facts: “What We Know and What We Don’t”. Available at: www.marchofdimes.com/prematurity.

  2. Savineau JP, Mironneau J. An analysis of the action of phorbol 12,13- dibutyrate on mechanical activity in rat uterine smooth muscle. J Pharm Exper Therap. 1990;255:133–139.

    CAS  Google Scholar 

  3. Kronbergs A, Fomin V. The effect of protein kinase C on intracellular Ca concentration and force in pregnant human myometrium. 1st SGI International Summit on Preterm Birth, Siena, Italy, 2005, p. 220.

  4. Ozaki H, Yasuda K, Kim YS, et al. Possible role of the protein kinase C/CPI-17 pathway in the augmented contraction of human myometrium after gestation. Br J Pharmacol. 2003;140:1303–1312.

    Article  CAS  Google Scholar 

  5. Fomin VP, Tang D, Morimiya A, Vanam RP, Gunst S. Role of PKC α in Regulation of Human Uterine Contractility. Experimental Biology Annual Meeting, San Diego, California, April 11–15, 2003, p. A37.

  6. Hurd WW, Fomin VP, Natarajan V, Brown HL, Bigsby RM, Singh DM. Expression of protein kinase C isoenzymes in non-pregnant and pregnant human myometrium. Am J Obstet Gynecol. 2000;183:1525–1531.

    Article  CAS  Google Scholar 

  7. Khalil RA, Lajoie C, Morgan KG. In situ determination of [Ca2+]i threshold translocation of the α-protein kinase C iso-form. Am J Physiol. 1994;266:C1544-C1551.

  8. Dessy C, Matsuda N, Hulvershorn J, Sougnez CL, Sellke FW, Morgan KG. Evidence for involvement of the PKCa isoform in myogenic contractions of the coronary microcirculation. Am J Physiol. 2000;279:H916-H923.

  9. Braz JC, Gregory K, Pathak A, et al. PKC-a regulates cardiac contractility and propensity toward heart failure. Nat Med. 2004;10:248–254.

    Article  CAS  Google Scholar 

  10. Kanashiro CA, Cockrell KL, Alexander BT, Granger JP, Khalil RA. Pregnancy associated reduction in vascular protein kinase C activity rebounds during inhibition of NO synthesis. Am J Physiol. 2000;278:R295-R303.

  11. Dempsey EC, Newton AC, Mochly-Rosen D, et al. Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol. 2000;79:L429-L438.

  12. Yeon D-S, Kim J-S, Ahn D-S, et al. Role of protein kinase Cor RhoA- induced Ca2+ sensitization in stretch-induced myogenic tone. Cardiovasc Res. 2002;53:431–438.

    Article  CAS  Google Scholar 

  13. Lesh RE, Somlyo AP, Owens GK, Somlyo AV. Reversible permeabilization. A novel technique for the intracellular introduction of antisense oligodeoxynucleotides into intact smooth muscle. Circ Res. 1995;77:220–230.

    Article  CAS  Google Scholar 

  14. Tang DD, Gunst SJ. Depletion of focal adhesion kinase by antisense oligodeoxynucletides depresses contractile activation of smooth muscle. Am J Physiol (Cell). 2001;280:C874-C883.

  15. Word RA, Tang DC, Kamm KE. Activation properties of myosin light chain kinase during contraction/relaxation cycles of tonic and phasic smooth muscles. J Biol Chem. 1994;269: 21596–21602.

    CAS  PubMed  Google Scholar 

  16. Horowitz AB, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996;76:967–1003.

    Article  CAS  Google Scholar 

  17. Morgan KG, Leinweber BD. PKC-dependent signalling mechanisms in differentiated smooth muscle. Acta Physiol Scand. 1998;164:495–505.

    Article  CAS  Google Scholar 

  18. Missiaen L, Kanmura Y, Eggermont JA, Casteels R. TPA- and agonist-induced force development in myometrium from pregnant and non-pregnant rats. Biochem Biophys Res Communs. 1989;158:302–306.

    Article  CAS  Google Scholar 

  19. Morrison JJ, Dearn SR, Smith SK, Ahmed A. Activation of protein kinase C is required for oxytocin-induced contractility in human pregnant myometrium. Hum Reprod. 1996;11:2285–2290.

    Article  CAS  Google Scholar 

  20. Breuiller-Fouche M, Tertin-Clary C, Heluy V, Ferre F. Role of protein kinase C in endothelin-1-induced contraction of human myometrium. Biol Reprod. 1998;59:153–159.

    Article  CAS  Google Scholar 

  21. Phillippe M. Mechanisms underlying phasic contractions of pregnant rat myometrium stimulated with aluminumfluoride. Am J Obstet Gynecol. 1994;170:981–990.

    Article  CAS  Google Scholar 

  22. Phillippe M. Protein kinase C, an inhibitor of oxytocin-stimulated phasic myometrial contractions. Biol Reprod. 1994;50:855–859.

    Article  CAS  Google Scholar 

  23. Sanborn BM, Ku CY, Shlykov S, Babich L. Molecular signaling through G-protein-coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig. 2005;12:479–487.

    Article  CAS  Google Scholar 

  24. Newton AC. Protein kinase C: structure, function, and regulation. J Biol Chem. 1995;270:28495–28498.

    Article  CAS  Google Scholar 

  25. Inagaki K, Hahn HS, Dorn GW, Mochly-Rosen D. Additive protection of the ischemic heart ex vivo by combined treatment with δ-protein kinase c inhibitor and ϵ-protein kinase C activator. Circulation. 2003;108:869–875.

    Article  CAS  Google Scholar 

  26. Murriel CL, Mochly-Rosen D. Opposing roles of 6 and ϵPKC in cardiac ischemia and reperfusion: targeting the apoptotic machinery. Arch Biochem Biophys. 2003;420: 246–254.

    Article  CAS  Google Scholar 

  27. Ruzycky AL, Kulick A. Estrogen increases the expression of uterine protein kinase C isozymes in a tissue specific manner. Eur J Pharm. 1996;313:257–263.

    Article  CAS  Google Scholar 

  28. Kim TT, Saunders T, Bieber E, Phillippe M. Tissue-specific protein kinase C isoform expression in rat uterine tissue. J Soc Gynecol Investig. 1999;6:293–300.

    Article  CAS  Google Scholar 

  29. Eude I, Paris B, Cabrol D, Ferre F, Breuiller-Fouche M. Selective protein kinase C isoforms are involved in endothelin-1-induced human uterine contraction at the end of pregnancy. Biol Reprod. 2000;63:1567–1573.

    Article  CAS  Google Scholar 

  30. Di Liberto G, Dallot E, Parco E-L, Cabrol D, Ferre F, Breuiller-Fouche M. A critical role for PKCζ in endothelin-1-induced uterine contractions at the end of pregnancy. Am J Physiol. 2003;285:C599-C607.

  31. Dallot E, Mehats C, Oger S, Leroy MJ, Breuiller-Fouche M. A role for PKCζ in the LPS-induced translocation NF-κBp65 subunit in cultured myometrial cells. Biochimie. 2005;87:513–521.

    Article  CAS  Google Scholar 

  32. Eude I, Dallot E, Ferre F, Breuiller-Fouche M. Protein kinase C alpha is required for endothelin-1-induced proliferation of human myometrial cells. Biol Reprod. 2002;66:44–49.

    Article  CAS  Google Scholar 

  33. Shimamura K, Kusaka M, Sperelakis N. Protein kinase C stimulates Ca2 current in pregnant rat myometrial cells. Can J Physiol Pharmacol. 1994;72:1304–1307.

    Article  CAS  Google Scholar 

  34. Navedo MF, Amberg GC, Nieves M, Molkentin JD, Santana LF. Mechanisms underlying heterogeneous Ca2+ sparklet activity in arterial smooth muscle. J Gen Physiol. 2006;127:611–622.

    Article  CAS  Google Scholar 

  35. Haller H, Lindschau C, Maasch C, Olthoff H, Kurscheid D, Luft FC. Integrin-induced protein kinase Cα and Cϵ translocation to focal adhesions mediates vascular smooth muscle cell spreading. Circ Res. 1998;82:157–165.

    Article  CAS  Google Scholar 

  36. Disatnik MH, Boulet SC, Lee CH, Mochly-Rosen D. Sequential activation of individual PKC isozymes in integrin-mediated muscle cell spreading: a role for MARCKS in an integrin signaling pathway. J Cell Sci. 2002;115:2151–2163.

    CAS  PubMed  Google Scholar 

  37. Dimopoulos GJ, Semba S, Kitazawa K, Eto M, Kitazawa T. Ca2+-dependent rapid Ca2+ sensitization of contraction in arterial smooth muscle. Circ Res. 2007;100:121–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor P. Fomin PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fomin, V.P., Kronbergs, A., Gunst, S. et al. Role of Protein Kinase Cα in Regulation of [Ca2+]I and Force in Human Myometrium. Reprod. Sci. 16, 71–79 (2009). https://doi.org/10.1177/1933719108324892

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719108324892

Key words

Navigation