Skip to main content

Advertisement

Log in

Promoter Hypermethylation of FANCF and Susceptibility and Prognosis of Epithelial Ovarian Cancer

  • Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Objective

To assess the 5′ CpG island methylation of Fanconi anemia, complementation group F (FANCF) gene in epithelial ovarian cancer (EOC) tissues and normal ovarian tissues and to investigate the relationship between FANCF methylation and clinicopathologic features and prognosis of EOC.

Methods

The experiment was performed with 112 EOC tissue samples (case group) and 60 normal ovarian tissues (control group). With methylation-specific polymerase chain reaction (MSP), FANCF methylation status of cases and controls was assessed. And the association between FANCF methylation and the clinicopathological features of EOC was investigated with univariate survival analysis and Cox regression model analysis.

Results

The methylation-positive rate of the case group was significantly higher than that of the control group (P = 0.015). The FANCF promoter methylation rates showed significant differences in the comparisons stratified by age, International Federation of Gynecology and Obstetrics (FIGO) staging, histopathological classification, and lymph node metastasis (all P < .05). Univariate survival analysis showed there were significant differences in mean survival time between the groups based on FIGO staging, histopathological classification, lymph node metastasis, and FANCF methylation (all P < .05). Cox regression model analysis suggested that FIGO staging and FANCF methylation were independent risk factors for EOC prognosis.

Conclusion

CpG island methylation of FANCF gene promoter region is strongly associated with the susceptibility and clinicopathologic features of EOC. The FIGO staging and FANCF methylation are independent risk factors for EOC prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Chudecka-Glaz AM. ROMA, an algorithm for ovarian cancer. Clin Chim Acta. 2015;440:143–151.

    Article  CAS  PubMed  Google Scholar 

  2. Ross JS, Ali SM, Wang K, et al. Comprehensive genomic profiling of epithelial ovarian cancer by next generation sequencingbased diagnostic assay reveals new routes to targeted therapies. Gynecol Oncol. 2013;130(3):554–559.

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    Article  PubMed  Google Scholar 

  4. Lowe KA, Chia VM, Taylor A, et al. An international assessment of ovarian cancer incidence and mortality. Gynecol Oncol. 2013;130(1):107–114.

    Article  PubMed  Google Scholar 

  5. Sala E, Priest AN, Kataoka M, et al. Apparent diffusion coefficient and vascular signal fraction measurements with magnetic resonance imaging: feasibility in metastatic ovarian cancer at 3 Tesla: technical development. Eur Radiol. 2010;20(2):491–496.

    Article  PubMed  Google Scholar 

  6. Birkbak NJ, Eklund AC, Li Q, et al. Paradoxical relationship between chromosomal instability and survival outcome in cancer. Cancer Res. 2011;71(10):3447–3452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D’Andrea AD. Susceptibility pathways in Fanconi’s anemia and breast cancer. N Engl J Med. 2010;362(20):1909–1919.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhao L, Li N, Yu JK, et al. RNAi-mediated knockdown of FANCF suppresses cell proliferation, migration, invasion, and drug resistance potential of breast cancer cells. Braz J Med Biol Res. 2014;47(1):24–34.

    Article  CAS  PubMed  Google Scholar 

  9. Litman R, Gupta R, Brosh RM Jr, Cantor SB. BRCA-FA pathway as a target for anti-tumor drugs. Anticancer Agents Med Chem. 2008;8(4):426–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kowal P, Gurtan AM, Stuckert P, D’Andrea AD, Ellenberger T. Structural determinants of human FANCF protein that function in the assembly of a DNA damage signaling complex. J Biol Chem. 2007;282(3):2047–2055.

    Article  CAS  PubMed  Google Scholar 

  11. Vollan HK, Rueda OM, Chin SF, et al. A tumor DNA complex aberration index is an independent predictor of survival in breast and ovarian cancer. Mol Oncol. 2015;9(1):115–127.

    Article  CAS  PubMed  Google Scholar 

  12. Stoepker C, Ameziane N, van der Lelij P, et al. Defects in the fanconi anemia pathway and chromatid cohesion in head and neck cancer. Cancer Res. 2015;75(17):3543–3553.

    Article  CAS  PubMed  Google Scholar 

  13. Guo H, Yan W, Yang Y, Guo M. [Promoter region methylation of DNA damage repair genes in human gastric cancer]. Zhonghua Yi Xue Za Zhi. 2014;94(28):2193–2196.

    CAS  PubMed  Google Scholar 

  14. M PN. World medical association publishes the revised declaration of helsinki. Natl Med J India. 2014;27(1):56.

    PubMed  Google Scholar 

  15. Committee FO. FIGO staging for gestational trophoblastic neoplasia 2000. FIGO oncology committee. Int J Gynaecol Obstet. 2002;77(3):285–287.

    Article  Google Scholar 

  16. Scully RE, Sobin LH. World Health Organization International Histological Classification of Tumours-Histological Typing of Ovarian Tumours. Springer Verlag, Berlin;1999.

  17. Taniguchi T, Tischkowitz M, Ameziane N, et al. Disruption of the Fanconi anemia-BRCA pathway in cisplatin-sensitive ovarian tumors. Nat Med. 2003;9(5):568–574.

    Article  CAS  PubMed  Google Scholar 

  18. Olopade OI, Wei M. FANCF methylation contributes to chemoselectivity in ovarian cancer. Cancer Cell. 2003;3(5):417–420.

    Article  CAS  PubMed  Google Scholar 

  19. Joo MK, Kim KH, Park JJ, et al. CpG island promoter hypermethylation of Ras association domain family 1A gene contributes to gastric carcinogenesis. Mol Med Rep. 2015;11(4):3039–3046.

    Article  CAS  PubMed  Google Scholar 

  20. Knudson A. Alfred Knudson and his two-hit hypothesis. (Interview by Ezzie Hutchinson). Lancet Oncol. 2001;2(10):642–645.

    Article  CAS  PubMed  Google Scholar 

  21. He M, Sun HG, Hao JY, et al. RNA interference-mediated FANCF silencing sensitizes OVCAR3 ovarian cancer cells to adriamycin through increased adriamycin-induced apoptosis dependent on JNK activation. Oncol Rep. 2013;29(5):1721–1729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang Z, Li M, Lu S, Zhang Y, Wang H. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther. 2006;5(3):256–260.

    Article  CAS  PubMed  Google Scholar 

  23. Yang HJ, Liu VW, Wang Y, Tsang PC, Ngan HY. Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data. BMC Cancer. 2006;6:212.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang Z, Li M, Lu S, Zhang Y, Wang H. Promoter hypermethylation of FANCF plays an important role in the occurrence of ovarian cancer through disrupting Fanconi anemia-BRCA pathway. Cancer Biol Ther. 2006;5(3):256–260.

    Article  CAS  PubMed  Google Scholar 

  25. Lahtz C, Pfeifer GP. Epigenetic changes of DNA repair genes in cancer. J Mol Cell Biol. 2011;3(1):51–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bouffard F, Plourde K, Belanger S, Ouellette G, Labrie Y, Durocher F. Analysis of a FANCE splice isoform in regard to dna repair. J Mol Biol. 2015;427(19):3056–3073.

    Article  CAS  PubMed  Google Scholar 

  27. Narayan G, Arias-Pulido H, Nandula SV, et al. Promoter hypermethylation of FANCF: disruption of Fanconi Anemia-BRCA pathway in cervical cancer. Cancer Res. 2004;64(9):2994–2997.

    Article  CAS  PubMed  Google Scholar 

  28. Dhillon VS, Shahid M, Husain SA. CpG methylation of the FHIT, FANCF, cyclin-D2, BRCA2 and RUNX3 genes in Granulosa cell tumors (GCTs) of ovarian origin. Mol Cancer. 2004;3:33.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marsit CJ, Liu M, Nelson HH, Posner M, Suzuki M, Kelsey KT. Inactivation of the Fanconi anemia/BRCA pathway in lung and oral cancers: implications for treatment and survival. Oncogene. 2004;23(4):1000–1004.

    Article  CAS  PubMed  Google Scholar 

  30. Lim SL, Smith P, Syed N, et al. Promoter hypermethylation of FANCF and outcome in advanced ovarian cancer. Br J Cancer. 2008;98(8):1452–1456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bakker ST, van de Vrugt HJ, Visser JA, et al. Fancf-deficient mice are prone to develop ovarian tumours. J Pathol. 2012;226(1):28–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-Feng Zhao MM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, JJ., Wang, G., Shi, WX. et al. Promoter Hypermethylation of FANCF and Susceptibility and Prognosis of Epithelial Ovarian Cancer. Reprod. Sci. 23, 24–30 (2016). https://doi.org/10.1177/1933719115612136

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719115612136

Keywords

Navigation