Skip to main content

Advertisement

Log in

Human Endogenous Retroviruses and the Placenta

  • Reviews
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Up to 8% of the human genome is of retroviral origin. These stably integrated retroviral sequences that characterize the human endogenous retrovirus (HERV) arose from retroviral infections that occurred more than 25 million years ago. The host and the retrovirus have subsequently coevolved as retrovirally derived genetic material is propagated in a Mendelian fashion. Although most HERV sequences are silenced, several have been described that are functional. The effects of some HERV-derived products are linked to human disease; others appear essential to human organ function. The human placenta, unique in its active expression of retroviral sequences that are not expressed in other tissues, may hold the key to an improved understanding of the functional significance of HERVs. In this review, we discuss the contribution of retroelements, particularly HERVs, to placental function and dysfunction. We describe fusogenic and immunosuppressive HERV activities and emphasize epigenetic regulation of retroelement expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bannert N, Kurth R. Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci USA. 2004;101(suppl 2):14572–14579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Holmes RK, Malim MH, Bishop KN. APOBEC-mediated viral restriction: not simply editing? Trends Biochem Sci. 2007;32(3):118–128.

    Article  CAS  PubMed  Google Scholar 

  3. Belshaw R, Watson J, Katzourakis A, et al. Rate of recombinational deletion among human endogenous retroviruses. J Virol. 2007;81(17):9437–9442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee YN, Malim MH, Bieniasz PD. Hypermutation of an ancient human retrovirus by APOBEC3G. J Virol. 2008;82(17):8762–8770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blanco P, Shlumukova M, Sargent CA, Jobling MA, Affara N, Hurles ME. Divergent outcomes of intrachromosomal recombination on the human Y chromosome: male infertility and recurrent polymorphism. J Med Genet. 2000;37(10):752–758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Norwitz ER, Schust DJ, Fisher SJ. Implantation and the survival of early pregnancy. N Engl J Med. 2001;345(19):1400–1408.

    Article  CAS  PubMed  Google Scholar 

  7. Hunt JS. Stranger in a strange land. Immunol Rev. 2006;213(1):36–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bestor TH, Bourc’his D. Transposon silencing and imprint establishment in mammalian germ cells. Cold Spring Harb Symp Quant Biol. 2004;69:381–387.

    Article  CAS  PubMed  Google Scholar 

  9. Tycko B, Morison IM. Physiological functions of imprinted genes. J Cell Physiol. 2002;192(3):245–258.

    Article  CAS  PubMed  Google Scholar 

  10. Yoder JA, Walsh CP, Bestor TH. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 1997;13(8):335–340.

    Article  CAS  PubMed  Google Scholar 

  11. Mi S, Lee X, Li X, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403(6771):785–789.

    Article  CAS  PubMed  Google Scholar 

  12. Kapitonov VV, Jurka J. A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet. 2008;9(5):411–412; author reply 414.

    Article  PubMed  Google Scholar 

  13. Larsson E, Kato N, Cohen M. Human endogenous pro-viruses. Curr Top Microbiol Immunol. 1989;148:115–132.

    CAS  PubMed  Google Scholar 

  14. Andersson ML, Lindeskog M, Medstrand P, Westley B, May F, Blomberg J. Diversity of human endogenous retrovirus class II-like sequences. J Gen Virol. 1999;80(pt 1):255–260.

    Article  CAS  PubMed  Google Scholar 

  15. Stoye JP. Endogenous retroviruses: still active after all these years? Curr Biol. 2001;11(22):R914–R916.

    Article  CAS  PubMed  Google Scholar 

  16. Moyes D, Griffiths DJ, Venables PJ. Insertional polymorphisms: a new lease of life for endogenous retroviruses in human disease. Trends Genet. 2007;23(7):326–333.

    Article  CAS  PubMed  Google Scholar 

  17. Boller K, Schonfeld K, Lischer S, et al. Human endogenous retrovirus HERV-K113 is capable of producing intact viral particles. J Gen Virol. 2008;89(pt 2):567–572.

    Article  CAS  PubMed  Google Scholar 

  18. Moyes DL, Martin A, Sawcer S, et al. The distribution of the endogenous retroviruses HERV-K113 and HERV-K115 in health and disease. Genomics. 2005;86(3):337–341.

    Article  CAS  PubMed  Google Scholar 

  19. Turner G, Barbulescu M, Su M, Jensen-Seaman MI, Kidd KK, Lenz J. Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr Biol. 2001;11(19):1531–1535.

    Article  CAS  PubMed  Google Scholar 

  20. Schulte AM, Wellstein A. Structure and phylogenetic analysis of an endogenous retrovirus inserted into the human growth factor gene pleiotrophin. J Virol. 1998;72(7):6065–6072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bieche I, Laurent A, Laurendeau I, et al. Placenta-specific INSL4 expression is mediated by a human endogenous retrovirus element. Biol Reprod. 2003;68(4):1422–1429.

    Article  CAS  PubMed  Google Scholar 

  22. Huh JW, Ha HS, Kim DS, Kim HS. Placenta-restricted expression of LTR-derived NOS3. Placenta. 2008;29(7):602–608.

    Article  CAS  PubMed  Google Scholar 

  23. Landry JR, Mager DL. Functional analysis of the endogenous retroviral promoter of the human endothelin B receptor gene. J Virol. 2003;77(13):7459–7466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Landry JR, Rouhi A, Medstrand P, Mager DL. The Opitz syndrome gene Mid1 is transcribed from a human endogenous retroviral promoter. Mol Biol Evol. 2002;19(11):1934–1942.

    Article  CAS  PubMed  Google Scholar 

  25. Moulard M, Hallenberger S, Garten W, Klenk HD. Processing and routage of HIV glycoproteins by furin to the cell surface. Virus Res. 1999;60(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  26. de Parseval N, Casella J, Gressin L, Heidmann T. Characterization of the three HERV-H proviruses with an open envelope reading frame encompassing the immunosuppressive domain and evolutionary history in primates. Virology. 2001;279(2):558–569.

    Article  PubMed  CAS  Google Scholar 

  27. Lower R, Lower J, Kurth R. The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc Natl Acad Sci USA. 1996;93(11):5177–5184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sugimoto J, Matsuura N, Kinjo Y, Takasu N, Oda T, Jinno Y. Transcriptionally active HERV-K genes: identification, isolation, and chromosomal mapping. Genomics. 2001;72(2):137–144.

    Article  CAS  PubMed  Google Scholar 

  29. Shiroma T, Sugimoto J, Oda T, Jinno Y, Kanaya F. Search for active endogenous retroviruses: identification and characterization of a HERV-E gene that is expressed in the pancreas and thyroid. J Hum Genet. 2001;46(11):619–625.

    Article  CAS  PubMed  Google Scholar 

  30. Okahara G, Matsubara S, Oda T, Sugimoto J, Jinno Y, Kanaya F. Expression analyses of human endogenous retroviruses (HERVs): tissue-specific and developmental stage-dependent expression of HERVs. Genomics. 2004;84(6):982–990.

    Article  CAS  PubMed  Google Scholar 

  31. Blaise S, de Parseval N, Benit L, Heidmann T. Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci USA. 2003;100(22):13013–13018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Paces J, Pavlicek A, Paces V. HERVd: database of human endogenous retroviruses. Nucleic Acids Res. 2002;30(1): 205–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim TH, Jeon YJ, Kim WY, Kim HS. HESAS: HERVs expression and structure analysis system. Bioinformatics. 2005;21(8):1699–1700.

    Article  CAS  PubMed  Google Scholar 

  34. Oja M, Peltonen J, Blomberg J, Kaski S. Methods for estimating human endogenous retrovirus activities from EST databases. BMC Bioinformatics. 2007;8(suppl 2):S11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Frank O, Verbeke C, Schwarz N, et al. Variable transcriptional activity of endogenous retroviruses in human breast cancer. J Virol. 2008;82(4):1808–1818.

    Article  CAS  PubMed  Google Scholar 

  36. Pichon JP, Bonnaud B, Mallet F. Quantitative multiplex degenerate PCR for human endogenous retrovirus expression profiling. Nat Protoc. 2006;1(6):2831–2838.

    Article  CAS  PubMed  Google Scholar 

  37. Seifarth W, Frank O, Zeilfelder U, et al. Comprehensive analysis of human endogenous retrovirus transcriptional activity in human tissues with a retrovirus-specific microarray. J Virol. 2005;79(1):341–352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Khodosevich K, Lebedev Y, Sverdlov ED. Large-scale determination of the methylation status of retrotransposons in different tissues using a methylation tags approach. Nucleic Acids Res. 2004;32(2):e31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Seifarth W, Spiess B, Zeilfelder U, Speth C, Hehlmann R, Leib-Mosch C. Assessment of retroviral activity using a universal retrovirus chip. J Virol Methods. 2003;112(1–2):79–91.

    Article  CAS  PubMed  Google Scholar 

  40. Rothberg JM, Leamon JH. The development and impact of 454 sequencing. Nat Biotechnol. 2008;26(10):1117–1124.

    Article  CAS  PubMed  Google Scholar 

  41. Frendo JL, Olivier D, Cheynet V, et al. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol. 2003;23(10): 3566–3574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayward MD, Potgens AJ, Drewlo S, Kaufmann P, Rasko JE. Distribution of human endogenous retrovirus type W receptor in normal human villous placenta. Pathology. 2007;39(4):406–412.

    Article  CAS  PubMed  Google Scholar 

  43. Blond JL, Lavillette D, Cheynet V, et al. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol. 2000;74(7):3321–3329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lavillette D, Marin M, Ruggieri A, Mallet F, Cosset FL, Kabat D. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J Virol. 2002;76(13):6442–6452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kudaka W, Oda T, Jinno Y, Yoshimi N, Aoki Y. Cellular localization of placenta-specific human endogenous retrovirus (HERV) transcripts and their possible implication in pregnancy-induced hypertension. Placenta. 2008;29(3):282–289.

    Article  CAS  PubMed  Google Scholar 

  46. Lee X, Keith JC Jr, Stumm N, et al. Downregulation of placental syncytin expression and abnormal protein localization in pre-eclampsia. Placenta. 2001;22(10):808–812.

    Article  CAS  PubMed  Google Scholar 

  47. Chen CP, Chen LF, Yang SR, et al. Functional characterization of the human placental fusogenic membrane protein syncytin 2. Biol Reprod. 2008;79(5):815–823.

    Article  CAS  PubMed  Google Scholar 

  48. Malassine A, Blaise S, Handschuh K, et al. Expression of the fusogenic HERV-FRD Env glycoprotein (syncytin 2) in human placenta is restricted to villous cytotrophoblastic cells. Placenta. 2007;28(2–3):185–191.

    Article  CAS  PubMed  Google Scholar 

  49. Esnault C, Priet S, Ribet D, et al. A placenta-specific receptor for the fusogenic, endogenous retrovirus-derived, human syncytin-2. Proc Natl Acad Sci USA. 2008;105(45):17532–17537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malassine A, Frendo JL, Blaise S, et al. Human endogenous retrovirus-FRD envelope protein (syncytin 2) expression in normal and trisomy 21-affected placenta. Retrovirology. 2008;5(6):1–10.

    Google Scholar 

  51. Dupressoir A, Marceau G, Vernochet C, et al. Syncytin-A and syncytin-B, two fusogenic placenta-specific murine envelope genes of retroviral origin conserved in Muridae. Proc Natl Acad Sci USA. 2005;102(3):725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Benit L, Dessen P, Heidmann T. Identification, phylogeny, and evolution of retroviral elements based on their envelope genes. J Virol. 2001;75(23):11709–11719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cianciolo GJ, Copeland TD, Oroszlan S, Snyderman R. Inhibition of lymphocyte proliferation by a synthetic peptide homologous to retroviral envelope proteins. Science. 1985;230(4724):453–455.

    Article  CAS  PubMed  Google Scholar 

  54. Mangeney M, Heidmann T. Tumor cells expressing a retroviral envelope escape immune rejection in vivo. Proc Natl Acad Sci USA. 1998;95(25):14920–14925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Blaise S, Mangeney M, Heidmann T. The envelope of Mason-Pfizer monkey virus has immunosuppressive properties. J Gen Virol. 2001;82(pt 7):1597–1600.

    Article  CAS  PubMed  Google Scholar 

  56. Mangeney M, de Parseval N, Thomas G, Heidmann T. The full-length envelope of an HERV-H human endogenous retrovirus has immunosuppressive properties. J Gen Virol. 2001;82(pt 10):2515–2518.

    Article  CAS  PubMed  Google Scholar 

  57. Mangeney M, Renard M, Schlecht-Louf G, et al. Placental syncytins: Genetic disjunction between the fusogenic and immunosuppressive activity of retroviral envelope proteins. Proc Natl Acad Sci USA. 2007;104(51):20534–20539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lin L, Xu B, Rote NS. The cellular mechanism by which the human endogenous retrovirus ERV-3 env gene affects proliferation and differentiation in a human placental trophoblast model, BeWo. Placenta. 2000;21(1):73–78.

    Article  CAS  PubMed  Google Scholar 

  59. Lin L, Xu B, Rote NS. Expression of endogenous retrovirus ERV-3 induces differentiation in BeWo, a choriocarcinoma model of human placental trophoblast. Placenta. 1999;20(1):109–118.

    Article  CAS  PubMed  Google Scholar 

  60. Kato N, Pfeifer-Ohlsson S, Kato M, et al. Tissue-specific expression of human provirus ERV3 mRNA in human placenta: two of the three ERV3 mRNAs contain human cellular sequences. J Virol. 1987;61(7):2182–2191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. de Parseval N, Heidmann T. Physiological knockout of the envelope gene of the single-copy ERV-3 human endogenous retrovirus in a fraction of the Caucasian population. J Virol. 1998;72(4):3442–3445.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gama-Sosa MA, Slagel VA, Trewyn RW, et al. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 1983;11(19):6883–6894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Fuke C, Shimabukuro M, Petronis A, et al. Age related changes in 5-methylcytosine content in human peripheral leukocytes and placentas: an HPLC-based study. Ann Hum Genet. 2004;68(pt 3):196–204.

    Article  CAS  PubMed  Google Scholar 

  64. Lavie L, Kitova M, Maldener E, Meese E, Mayer J. CpG methylation directly regulates transcriptional activity of the human endogenous retrovirus family HERV-K(HML-2). J Virol. 2005;79(2):876–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Matouskova M, Blazkova J, Pajer P, Pavlicek A, Hejnar J. CpG methylation suppresses transcriptional activity of human syncytin-1 in non-placental tissues. Exp Cell Res. 2006;312(7):1011–1020.

    Article  CAS  PubMed  Google Scholar 

  66. Reiss D, Zhang Y, Mager DL. Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Res. 2007;35(14):4743–4754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293(5532): 1089–1093.

    Article  CAS  PubMed  Google Scholar 

  68. Chong S, Whitelaw E. Epigenetic germline inheritance. Curr Opin Genet Dev. 2004;14(6):692–696.

    Article  CAS  PubMed  Google Scholar 

  69. Wilkins JF. Genomic imprinting and methylation: epigenetic canalization and conflict. Trends Genet. 2005;21(6):356–365.

    Article  CAS  PubMed  Google Scholar 

  70. Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9(2):129–140.

    Article  CAS  PubMed  Google Scholar 

  71. Morgan HD, Sutherland HG, Martin DI, Whitelaw E. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23(3):314–318.

    Article  CAS  PubMed  Google Scholar 

  72. Waterland RA, Jirtle RL. Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition. 2004;20(1):63–68.

    Article  CAS  PubMed  Google Scholar 

  73. Shen HM, Nakamura A, Sugimoto J, et al. Tissue specificity of methylation and expression of human genes coding for neuropeptides and their receptors, and of a human endogenous retrovirus K family. J Hum Genet. 2006;51(5):440–450.

    Article  CAS  PubMed  Google Scholar 

  74. Tycko B. Imprinted genes in placental growth and obstetric disorders. Cytogenet Genome Res. 2006;113(1–4):271–278.

    Article  CAS  PubMed  Google Scholar 

  75. Youngson NA, Kocialkowski S, Peel N, Ferguson-Smith AC. A small family of sushi-class retrotransposon-derived genes in mammals and their relation to genomic imprinting. J Mol Evol. 2005;61(4):481–490.

    Article  CAS  PubMed  Google Scholar 

  76. Ono R, Kobayashi S, Wagatsuma H, et al. A retrotransposon-derived gene, PEG10, is a novel imprinted gene located on human chromosome 7q21. Genomics. 2001;73(2):232–237.

    Article  CAS  PubMed  Google Scholar 

  77. Ono R, Nakamura K, Inoue K, et al. Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality. Nat Genet. 2006;38(1):101–106.

    Article  CAS  PubMed  Google Scholar 

  78. Suzuki S, Ono R, Narita T, et al. Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting. PLoS Genet. 2007;3(4):e55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Sekita Y, Wagatsuma H, Nakamura K, et al. Role of retrotransposon-derived imprinted gene, Rtl1, in the fetomaternal interface of mouse placenta. Nat Genet. 2008;40(2):243–248.

    Article  CAS  PubMed  Google Scholar 

  80. Kagami M, Sekita Y, Nishimura G, et al. Deletions and epimutations affecting the human 14q32.2 imprinted region in individuals with paternal and maternal upd(14)-like phenotypes. Nat Genet. 2008;40(2):237–242.

    Article  CAS  PubMed  Google Scholar 

  81. Furman MH, Ploegh HL, Schust DJ. Can viruses help us to understand and classify the MHC class I molecules at the maternal-fetal interface? Hum Immunol. 2000;61(11):1169–1176.

    Article  CAS  PubMed  Google Scholar 

  82. Schust DJ, Hill AB, Ploegh HL. Herpes simplex virus blocks intracellular transport of HLA-G in placentally derived human cells. J Immunol. 1996;157(8):3375–3380.

    CAS  PubMed  Google Scholar 

  83. Schust DJ, Tortorella D, Seebach J, Phan C, Ploegh HL. Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med. 1998;188(3):497–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danny J. Schust MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugimoto, J., Schust, D.J. Human Endogenous Retroviruses and the Placenta. Reprod. Sci. 16, 1023–1033 (2009). https://doi.org/10.1177/1933719109336620

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1177/1933719109336620

Key words

Navigation