Skip to main content

1.2 V Single Supply CMOS Level-Up Shifter for Low Energy Systems

Buy Article:

$107.14 + tax (Refund Policy)

Modern mobile system-on-a-chip (SoC) requires multi power supply domains. Therefore, in order to reduce the power consumption of an electronic system and the battery size, a single supply CMOS level-up shifter (yt-ls) for up-converting signals from 0.6 V–1.1 V logic level range up to 1.2 V power supply domain is presented. The circuit has been developed using 65 nm CMOS technology to meet the desirable requirements, such as small size, low power, low static current, and a wide input voltage range for multiple voltage domains. Additionally, to minimize energy consumption, diode connected transistors are employed. From the post-layout simulations, with the power supply voltage of 1.2 V, when a 0.7 V input square wave switching at 500 MHz is applied, the shifter exhibits an output full swing with a propagation delay of only 0.2 ns, an energy consumption of only 0.23 pJ, an energy-delay-product (EDP) 49 pJps, under the output capacitive loading condition of 25 fF. Simulation results demonstrate that the proposed level shifter provides a high robustness against process, voltage and temperature (PVT) variations.

Keywords: CMOS; LEVEL SHIFTER; LOW POWER; LOW THRESHOLD VOLTAGE; STANDBY CURRENT

Document Type: Research Article

Publication date: 01 December 2017

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content