Skip to main content

Robust SRAM Design via Joint Sizing and Voltage Optimization Under Dynamic Stability Constraints

Buy Article:

$107.14 + tax (Refund Policy)

Technology scaling has rendered the robust design of SRAMs very challenging due to the escalating process variability. In this paper, we present a yield-aware SRAM optimization approach, wherein, the dominant effect of random process variations, are taken into account in the optimization flow by extracting statistical performance models for stability, access time and leakage power. More importantly, in addition to transistor sizing, we show that optimizing the Supply voltage and Wordline voltage provides important, extra design freedom and leads to improved cell designs. Furthermore, it is shown that it is critical to precisely characterize SRAM stability from a dynamical point of view with shrinking access cycle time. The use of such dynamic noise margins in the design flow avoids overdesign and failures in meeting dynamic constraints which could be resulted otherwise when traditional static noise margins are employed.

Keywords: ACCESS TIME; DYNAMIC NOISE MARGIN; LEAKAGE POWER; NONLINEAR OPTIMIZATION; STATIC NOISE MARGIN

Document Type: Research Article

Publication date: 01 April 2010

More about this publication?
  • The electronic systems that can operate with very low power are of great technological interest. The growing research activity in the field of low power electronics requires a forum for rapid dissemination of important results: Journal of Low Power Electronics (JOLPE) is that international forum which offers scientists and engineers timely, peer-reviewed research in this field.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content