Skip to main content

In-Situ Catalytic Gasification of Rice Hull Using Municipal Solid Waste Incineration Bottom Ash

Buy Article:

$107.14 + tax (Refund Policy)

The demand for alternative energy is increasing rapidly because of global warming and the depletion of fossil fuels. Gasification is a technology that produces gaseous fuels through the incomplete combustion of waste or biomass. The introduction of a catalyst during gasification may increase the production of H2 and reduce tar formation. In this study, the catalytic gasification of rice hulls was carried out using a fluidized gasifier. To improve the gas yield and reduce tar, municipal solid waste incineration bottom ash (IBA) having nanoporosity was introduced as a substitute for the fluidized bed material. Gasification was carried out at 800 °C, and the flow materials were silica sand, dolomite, and incineration bottom ash. The equivalence ratio, which is the ratio of oxygen supplied to oxygen required for complete combustion, was set to 0.3. The application of alternate fluidized bed materials (dolomite and incineration bottom ash) was effective in improving the hydrogen yield and tar reduction. This was attributed to the high Ca and Mg contents in dolomite and incineration bottom ash. Therefore, it is expected that IBA can be utilized as a catalytic fluidized bed material to replace silica sand.

Keywords: Catalytic Gasification; Dolomite; Fluidized Bed Gasification; Incineration Bottom Ash; Rice Hull; Tar Reduction

Document Type: Research Article

Affiliations: 1: Research Center for Climate Change and Energy, Hallym University, Chuncheon, 24252, Republic of Korea 2: Korea Environment and Water Works Institute, Seoul, 07201, Republic of Korea 3: Department of Environmental Engineering, Daegu University, Gyeongsan, 38453, Republic of Korea 4: School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea

Publication date: 01 July 2021

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content