Skip to main content

The Anti-Proliferative Effect of Flavonoid Nanoparticles on the Human Ovarian Cancer Cell Line SK0V3

Buy Article:

$107.14 + tax (Refund Policy)

To investigate the anti-proliferative effect of flavonoid nanoparticles on the human ovarian cancer cell line SKOV3. Ten nude mice were intraperitoneally inoculated with the human ovarian cancer SKOV3 cell mixture. The treatment group received tail vein injections with 1.25 mg/kg of flavonol, once every 3 days, 0.2 mL each time, for a total of 12 times. The control group was a tumor model that was injected with 50 mL/L glucose solution; it was observed in Lacquerin Group as the Laccase Nanoparticle Group. Tumor quality was recorded after treatment. The morphology of tumor cells in the two groups was observed by fluorescence microscopy. MTS was used to measure the value of tumor cells in the two groups after administration. Apoptosis of SKOV3 cells was detected by flow cytometry using a tumor cell suspension. The MTT results showed a decreased growth rate of SKOV3 cells with an increase in the mass concentration of flavonoid nanoparticles. The nude mice in the control group had scattered cauliflower-like tumor nodules. The treatment group only showed very small granular tumor nodules. The tumor mass within the treatment group was comparable (P > 0.05), but was lower than that in the control group (P < 0.05). The morphology of the tumor cells in the treatment group became longer and thinner and showed a slender spindle shape. Some high-temperature treated cells even appeared star-shaped, and the cell bodies were significantly broadened. Flow cytometry results showed significantly increased apoptosis of the SKOV3 cells after treatment with flavonoid nanoparticles. The MTS results showed a significantly slowed proliferation rate of SKOV3 cells after two days of administering flavonoid nanoparticles (P < 0.05). Flavonoid nanoparticles were nontoxic, and decreased cell proliferation of and promoted apoptosis in an ovarian cancer cell line.

Keywords: Apoptosis; Cell Proliferation; Ovarian Cancer; Rhamsterin Nanoparticles

Document Type: Research Article

Affiliations: 1: Department of Gynaecology and Obstetrics, Heping Hospital Affiliated to Changzhi Medical College, Changzhi 046000, Shanxi, PR China 2: Department of Biochemistry, Changzhi Medical College, Changzhi 046000, Shanxi, PR China

Publication date: 01 October 2020

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content