Skip to main content

Preparation and Characterization of Nanosized Bi-Doped SnO2/Reduced Graphene Oxide 3D Hybrids for Visible-Light-Driven Photocatalysis

Buy Article:

$107.14 + tax (Refund Policy)

The nanosized Bi-doped SnO2/reduced graphene oxide 3D hybrids have been synthesized via one-step hydrothermal method. The structures, morphologies, photocatalytic activities of the as-prepared samples were discussed, respectively. The formation mechanism of the as-prepared hybrids was also proposed. Experimental results indicated that the usage amount of Bi2Sn2O7 obviously affected the photocatalytic performance of the as-prepared products. When it was 450 mg, the as-prepared sample possessed the band gap energy of 1.9 eV and the photocatalytic efficiency of 90% in 210 min for degradation of rhodamine B solution. In addition, triethylene tetramine and the as-prepared carbon hydrogel could act as reductant to synergistically reduce Bi2Sn2O7 into Bi-doped SnO2 particles during the formation of the hybrids.

Keywords: Bi-Doped SnO2; Photocatalytic; Reduced Graphene Oxide

Document Type: Research Article

Affiliations: School of Materials Science and Engineering, Hebei Provincial Key Laboratory of Traffic Engineering Materials, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Publication date: 01 July 2018

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content