Skip to main content

Preparation and Gas Sensing Properties of Hollow ZnS Microspheres

Buy Article:

$107.14 + tax (Refund Policy)

Hollow ZnS microspheres are synthesized by a facile hydrothermal method. Morphology and structure of the ZnS microspheres are analyzed by SEM, TEM, XRD and N2 sorption technique, Gas sensing properties of the as-prepared ZnS sensor are also systematically investigated. The results show that the ZnS microspheres have well-developed porous and hollow nanostructure. The sensor based on the ZnS microspheres exhibits ultra-fast response (1–2 s) and fast recovery time (7–34 s) towards ethanol at the optimal operating temperature of 160 °C. Moreover, the ZnS sensor also demonstrates high selectivity to other gases such as methanol, benzene, dichloromethane and hexane, suggesting that it is a promising candidate for ethanol sensing applications.

Document Type: Research Article

Publication date: 01 March 2016

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content