Skip to main content

Partially Acetylated Dendrimer-Entrapped Gold Nanoparticles with Reduced Cytotoxicity for Gene Delivery Applications

Buy Article:

$107.14 + tax (Refund Policy)

Gene therapy has been concerned to be one of the most promising strategies to treat many diseases such as genetic disorders and cancer. However, design of safe and highly efficient gene delivery vectors still remains a great challenge. In this work, we report the use of partially acetylated dendrimer-entrapped gold nanoparticles (Au DENPs) for gene delivery applications. First, partially acetylated generation 5 poly(amidoamine) dendrimers with different acetylation degrees were used as templates to synthesize Au DENPs. The formed Au DENPs were characterized via different techniques and were used to complex two different pDNAs encoding luciferase (Luc) and enhanced green fluorescent protein (EGFP), respectively for gene transfection studies. The Au DENPs/pDNA polyplexes with different N/P ratios were characterized by gel retardation assay, dynamic light scattering, and zeta potential measurements, and the gene transfection efficiency was evaluated by Luc assay and fluorescence microscopic imaging of the EGFP expression, respectively. We show that despite the partial acetylation (5, 10, 20, and 30 acetyl groups per G5 dendrimer according to the molar feeding ratio), all acetylated Au DENPs are able to effectively compact the pDNA and transfect genes to the model cell line with high efficiency comparable to the Au DENPs without acetylation. With the proven less cytotoxicity of the partially acetylated Au DENPs than that of non-acetylated Au DENPs by cell viability assay, the developed partially acetylated Au DENPs may serve as promising vectors for safe gene delivery applications with non-compromised gene transfection efficiency.

Document Type: Research Article

Publication date: 01 June 2015

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content