Skip to main content

Electrospun Polyethylene Oxide (PEO) Nanofibers Containing Cyclodextrin Inclusion Complex

Buy Article:

$107.14 + tax (Refund Policy)

In this study, we obtained functional electrospun nanofibers containing stable fragrance/flavor molecule facilitated by cyclodextrin inclusion complexation. Menthol was used as a model fragrance/flavor molecule and we have electrospun poly(ethylene oxide) (PEO) nanofibers containing cyclodextrin-menthol inclusion complexes (CD-menthol-IC). We used two different solvent systems; water and water:ethanol and three types of CDs; α-CD, β-CD and γ-CD in order to find the optimal performance for the stabilization of menthol at high temperatures. We observed that the solvent system used for electrospinning process and the types of CDs (α-CD, β-CD and γ-CD) are very important to obtain CD-menthol-IC which ultimately determines the durability and temperature stability of menthol in the PEO nanofibrous web. We found out that it is better to use water rather than the water:ethanol solvent system for the inclusion complexation and additionally β-CD and γ-CD are most favorable choices since they are able to form complexation with menthol in the water solvent system. Despite the high volatility nature of menthol, our results demonstrated that the stability and temperature release of menthol was sustained to a very high and a broad temperature range (100 °C–250 °C) for PEO nanowebs containing CD-menthol-IC whereas the PEO nanofibers without CD and without CD-menthol complex could not preserve menthol even during storage. In brief, the results are very encouraging and open up for a variety of new exciting possibilities for the development of multi-functional electrospun nanofibers containing cyclodextrin inclusion complexes.

Keywords: CYCLODEXTRIN; ELECTROSPINNING; INCLUSION COMPLEX; MENTHOL; NANOFIBER; POLY(ETHYLENE OXIDE) (PEO)

Document Type: Research Article

Publication date: 01 May 2011

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content