Skip to main content

Synthesis and Raman Scattering from Zn1−x Mn x S Diluted Magnetic Semiconductor Nanowires

Buy Article:

$107.14 + tax (Refund Policy)

The growth of Diluted Magnetic Semiconducting (DMS) Zn1−x Mn x S (0 ≤ x < 0 6) nanowires (NWs) using a three-zone furnace and two solid sources is reported. The approach is generally applicable to many binary and ternary NW systems that grow by the Vapor-Liquid-Solid growth mechanism. Mn concentration was controlled by the temperature of the Mn source. The Zn/Mn ratio was found to determine the crystalline structure, i.e., wurtzite or zinc blende. High-resolution transmission electron microscopy measurements revealed highly crystalline single phase NWs. The vibrational properties of the DMS NWs with different Zn/Mn ratios were studied by correlating their Raman scattering spectra with the composition measured by Energy Dispersive X-Ray Spectroscopy (EDS). We find that the transverse optical (TO) phonon band disappears at the lowest Mn concentrations, while the longitudinal optical (LO) phonon band position was found insensitive to x. Three additional Raman bands were observed between the ZnS q = 0 TO and LO phonons when Mn atoms were present in the NWs. These bands are similar to those reported previously for bulk Zn1−x Mn x S and their origin is still controversial.

Keywords: DMS; NANOWIRES; RAMAN SCATTERING; SPINTRONICS; ZN1-X MNX S

Document Type: Research Article

Publication date: 01 January 2008

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content