Skip to main content

Chemomechanical Nanolithography: Nanografting on Silicon and Factors Impacting Linewidth

Buy Article:

$107.14 + tax (Refund Policy)

We present a two-fold extension of previous work on Atomic Force Microscope-based chemomechanical functionalization: (1) chemomechanical nanografting, which extends chemomechanical functionalization to a more stable initial surface, and (2) linewidth studies that show the impact of force and Atomic Force Microscope probe tip wear on patterning resolution. Alkene, alcohol, and alkyl halide molecules were nanografted to silicon and imaged with in situ atomic force microscopy, time-of-flight secondary ion mass spectrometry with Automated eXpert Spectrum Image Analysis, and scanning electron microscopy. Chemomechanical nanografting demonstrated linewidths down to 50 nm. Lines written on hydrogen-terminated silicon were used to explore the impact of tip radius and tip wear on linewidth when using Si3N4 coated tips.

Keywords: AFM NANOPATTERNING; ALCOHOL; ALKENE; CHEMOMECHANICAL FUNCTIONALIZATION; MONOLAYERS ON SILICON; NANOGRAFTING; NANOSHAVING; SEM; SILICON; TOF-SIMS

Document Type: Research Article

Publication date: 01 June 2006

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content