Skip to main content

Effect of Filling on the Compressibility of Carbon Nanotubes: Predictions from Molecular Dynamics Simulations

Buy Article:

$107.14 + tax (Refund Policy)

The compressibility of filled and empty (10, 10) carbon nanotubes (CNTs) is examined using classical molecular dynamics simulations. The filled nanotubes contain C60, CH4, Ne, n-C4 H10, and n-C4 H7 molecules that arecovalently cross-linked to the inner CNT walls. In addition, nanotubes filled with either a hydrogen-terminated carbon nanowire or a carbon nanotube of comparable diameter is also considered. The forces on the atoms are calculated using a many-body reactive empirical bond-order potential andthe adaptive intermolecular reactive empirical bond-order potential for hydrocarbons. The butane-filled system shows a unique yielding behavior prior to buckling that has not been observed previously. Cross-linking the molecules to the inner CNT walls is not predicted to affect the stiffnessof the filled nanotube systems and removes the yielding response. The mechanical response of the nanowire filled CNT is remarkably similar to the response of the similarly sized multiwalled CNT.

Keywords: BUCKLING FORCE; CARBON NANOTUBES; COMPRESSION; FILLING; MECHANICAL PROPERTIES

Document Type: Research Article

Publication date: 01 April 2005

More about this publication?
  • Journal for Nanoscience and Nanotechnology (JNN) is an international and multidisciplinary peer-reviewed journal with a wide-ranging coverage, consolidating research activities in all areas of nanoscience and nanotechnology into a single and unique reference source. JNN is the first cross-disciplinary journal to publish original full research articles, rapid communications of important new scientific and technological findings, timely state-of-the-art reviews with author's photo and short biography, and current research news encompassing the fundamental and applied research in all disciplines of science, engineering and medicine.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content