Skip to main content

A New Improved Firefly Algorithm for Global Numerical Optimization

Buy Article:

$107.14 + tax (Refund Policy)

A novel robust meta-heuristic optimization algorithm, which can be considered as an improvement of the recently developed firefly algorithm, is proposed to solve global numerical optimization problems. The improvement includes the addition of information exchange between the top fireflies, or the optimal solutions during the process of the light intensity updating. The detailed implementation procedure for this improved meta-heuristic method is also described. Standard benchmarking functions are applied to verify the effects of these improvements and it is illustrated that, in most situations, the performance of this improved firefly algorithm (IFA) is superior to or at least highly competitive with the standard firefly algorithm, a differential evolution method, a particle swarm optimizer, and a biogeography-based optimizer. Especially, this new method can accelerate the global convergence speed to the true global optimum while preserving the main feature of the basic FA.

Keywords: BENCHMARK FUNCTIONS; BIOGEOGRAPHY-BASED OPTIMIZATION (BBO); DIFFERENTIAL EVOLUTION (DE); FIREFLY ALGORITHM (FA); GLOBAL OPTIMIZATION PROBLEM; LÉVY FLIGHT; PARTICLE SWARM OPTIMIZATION (PSO); TOP FIREFLIES

Document Type: Research Article

Publication date: 01 February 2014

More about this publication?
  • Journal of Computational and Theoretical Nanoscience is an international peer-reviewed journal with a wide-ranging coverage, consolidates research activities in all aspects of computational and theoretical nanoscience into a single reference source. This journal offers scientists and engineers peer-reviewed research papers in all aspects of computational and theoretical nanoscience and nanotechnology in chemistry, physics, materials science, engineering and biology to publish original full papers and timely state-of-the-art reviews and short communications encompassing the fundamental and applied research.
  • Editorial Board
  • Information for Authors
  • Submit a Paper
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content