Skip to main content

Local Delivery of Vascular Endothelial Growth Factor via Nanofiber Matrix Improves Liver Regeneration After Extensive Hepatectomy in Rats

Buy Article:

$107.14 + tax (Refund Policy)

Vascular endothelial growth factor (VEGF) is a potent regulator for liver regeneration following partial hepatectomy. However, intravenous delivery of VEGF has yielded limited success in promoting the regeneration of remnant liver. Here we report a new approach to locally deliver recombinant VEGF from an electrospun poly-ε-caprolactone nanofiber mesh and its effect on improving rat liver regeneration after 70% hepatectomy. After applying the VEGF-releasing nanofiber mesh to the remnant liver lobes following hepatectomy in rats, the fractions of proliferating hepatocytes increased markedly at 48 h and 72 h in comparison with the control group receiving nanofiber meshes without VEGF. The expression of endogenous VEGF in liver tissue was also higher in the VEGF-nanofiber group than those in the control group. These results demonstrate that biodegradable nanofiber meshes offer a convenient and effective approach for local and sustained delivery of VEGF to the remnant liver following partial hepatectomy.

Keywords: HEPATECTOMY; LIVER REGENERATION; LOCAL DELIVERY; NANOFIBER MESH; VEGF

Document Type: Research Article

Publication date: 01 November 2014

More about this publication?
  • Journal of Biomedical Nanotechnology (JBN) is a peer-reviewed multidisciplinary journal providing broad coverage in all research areas focused on the applications of nanotechnology in medicine, drug delivery systems, infectious disease, biomedical sciences, biotechnology, and all other related fields of life sciences.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Terms & Conditions
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content