Skip to main content Skip to main navigation menu Skip to site footer
Type: Article
Published: 2018-12-28
Page range: 91–103
Abstract views: 818
PDF downloaded: 209

Various amberground marine animals on Burmese amber with discussions on its age

CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. University of Chinese Academy of Science, Beijing 100049, China. Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China.
University of Chinese Academy of Science, Beijing 100049, China. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China. Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
Lingpoge Amber Museum, Shanghai, China
State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. University of Science and Technology of China, Hefei 230026, China.
CAS Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China. Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China. School of Earth Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol BS8 1TQ, UK.
Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China.
Burmese amber mid-Cretaceous marine isocrinid crinoids

Abstract

Burmese amber represents the world’s most diverse biota in the Mesozoic. Previous studies have focused on the biodiversity of its inclusions, as well as pholadid borings. Here we report a variety of marine animals symbiotic with or adhere to Burmese amber or the amber deposits, including crinoid columns, corals and oysters. We propose that there is no distinct evidence indicating the secondary transportation of Burmese amber over long distances. The ancient sedimentary environment was likely located in the coastal area. The hardening time of the resin was not long after secretion. The resin has been mixed with fragments of marine organisms in the ancient sediments, and has been deposited for a long time. The zircon age in the sediments surrounding amber approximately represents the age of Burmese amber, but due to limits of the method, the current zircon U-Pb SIMS age may be younger. Therefore, as far as the situation is concerned, the age of Burmese amber may be close to the boundary between the Albian and Cenomanian, or even late Albian. We suggest that it is plausible to generally refer to the age of Burmese amber as mid-Cretaceous, and a precise age requires further biostratigraphic and chronological studies.

 

References

  1. Agassiz, L. (1836) Prodrome d’une monographie des radiares ou échinodermes. Mémoires de la Société Neuchâteloise des Sciences Naturelles, 1, 168–199.

    Baumiller, T.K. & Hagdorn, H. (1995) Taphonomy as a guide to functional morphology of Holocrinus, the first post-Paleozoic crinoid. Lethaia, 28, 221–228.

    Cai, C.Y., Escalona, H.E., Li, L.Q., Yin, Z.W., Huang, D.Y. & Engel, M.S. (2018) Beetle Pollination of Cycads in the Mesozoic. Current Biology, 28 (17), 2806–2812.

    https://doi.org/10.1016/j.cub.2018.06.036

    Chhibber, H.L. (1934) The mineral resources of Burma. London, Macmillan, 320 pp.

    Chu, Z.Y., He, H.Y., Ramezani, J., Bowring, S.A., Hu, D.Y., Zhang, L.J., Zheng, S.L., Wang, X.L., Zhou, Z.H., Deng, C.L. & Guo, J.H. (2016) High-precision U-Pb geochronology of the Jurassic Yanliao Biota from Jianchang (western Liaoning Province, China): Age constraints on the rise of feathered dinosaurs and eutherian mammals. Geochemistry Geophysics Geosystems, 17, 3983–3992.

    https://doi.org/10.1002/2016GC006529

    Cockerell, T.D.A. (1917) Insects in Burmese amber. Annals of the Entomological Society of America, 10, 323–329.

    Cruickshank, R.D. & Ko, K. (2003) Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 215, 441–455.

    https://doi.org/10.1016/S1367-9120(02)00044-5

    Donovan, S.K. (2001) Evolution of Caribbean echinoderms during the Cenozoic: moving towards a complete picture using all of the fossils. Palaeogeography, Palaeoclimatology, Palaeoecology, 166, 177–192.

    https://doi.org/10.1016/S0031-0182(00)00208-X

    Donovan, S.K., Portell, R.W., & Veltkamp, C.J. (2005) Lower Miocene echinoderms of Jamaica, West Indies. Scripta Geologica, 129, 91–135.

    https://doi.org/10.2307/4067933

    Eagle, M.K. & Hikuroa, D. (2003) Chariocrinus (Crinoidea: Articulata) from the Latady Formation, Behrendt and Hauberg Mountains, Ellsworth Land, Antarctica. New Zealand Journal of Geology and Geophysics, 46, 529–537.

    https://doi.org/10.1080/00288306.2003.9515027

    Gislén, T. (1924) Echinoderm studies. Zoologiska Bidrag fran Uppsala, 9, 316 pp.

    Grimaldi, D.A., Engel, M.S. & Nascimbene, P.C. (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361, 1–71.

    Hagdorn, H. (1982) Untersuchungen an Muschelkalk-Crinoiden, I: Zur Funktionsmorphologie des Stiels triassischer Isocrinida. Neues Jahrbuch für Geologie und Palӓontologie, Abhandlungen, 164, 134–136.

    Hagdorn, H. (1983) Holocrinus doreckae n. sp. aus dem Oberen Muschelkalk und die Entwicklung von Sollbruchstellen im Stiel der Isocrinida. Neues Jahrbuch für Geologie und Palӓontologie, Monatshefte, 345–368.

    Hagdorn, H. (1986) Isocrinus? dubius (Goldfuss, 1831) aus dem Unteren Muschelkalk (Trias, Anis). Zeitschrift für Geologische Wissenschaften, 14, 705–727.

    Hagdorn, H. (1993) Holocrinus dubius (Goldfuss, 1831) aus dem Unteren Muschelkalk von Rüdersdorf (Brandenburg). In: Hagdorn, H. & Seilacher, A. (Eds.), Muschelkalk, Schöntaler Symposium 1991. (Sonderbӓnde der Gesellschaft für Naturkunde in Württemberg, 2). Goldschneck-Verlag, Stuttgart, Korb, pp. 213.

    Hagdorn, H. (1996) Trias-Seelilien. Geologisch-Palӓontologische Mitteilungen Innsbruck, 21, 1–17.

    Hagdorn, H. (1999) Triassic Muschelkalk of Central Europe. In: Hess, H., Ausich, W.I., Brett, C.E. & Simms, M.J. (Eds.), Fossil crinoids. Cambridge University Press, Cambridge, pp. 164–176.

    Hagdorn, H. (2011) Triassic: the crucial period of post-Palaeozoic crinoid diversification. Swiss Journal of Palaeontology, 130, 91–112.

    https://doi.org/10.1007/s13358-010-0009-9

    Hess, H., Ausich, W.I., Brett, C.E. & Simms, M.J. (2003) Fossil crinoids. In: Hess, H., Ausich, W.I., Brett, C.E. & Simms, M.J. (Eds), Cambridge University Press, Cambridge, pp. 3–22.

    Hess, H. (1972) Chariocrinus n. gen. fur Isocrinus andreae Desor aus dem unteren Hauptrogenstein (Bajocian) des Basler Juras. Eclogae Geologicae Helvetiae, 65, 197–210.

    Huang, D.Y., Bechly, G., Nel, P., Engel, M.S., Prokop, J., Azar,D., Cai, C.Y., van de Kamp, T., Staniczek, A., Garrouste,R., Krogmann, L., dos Santos Rolo, T., Baumbach,T., Ohlhoff, R., Shmakov, A.S., Bourgoin, T. & Nel, A. (2016) New fossil insect order Permopsocida elucidates major radiation and evolution of suction feeding in hemimetabolous insects (Hexapoda: Acercaria). Scientific Reports, 6, 23004.

    Hunter, A.W. & Clark, N.D.L. (2009) The palaeoecology of two Scottish encrinites: Jurassic crinoid assemblages from the Trotternish Peninsula, Isle of Skye, Scotland. Scottish Journal of Geology, 45, 169–176.

    https://doi.org/10.1144/0036-9276/01-366

    Hunter, A.W. & Underwood, C.J. (2009) Palaeoenvironmental control on distribution of crinoids in the Bathonian (Middle Jurassic) of England and France. Acta Palaeontologica Polonica, 54, 77–98.

    https://doi.org/10.4202/app.2009.0109

    Hunter, A.W. & Zonnerveld, J.P. (2008) Palaeoecology of Jurassic encrinites: Reconstructing crinoid communities from the Western Interior Seaway of North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 263, 58–70.

    https://doi.org/10.1016/j.palaeo.2008.01.027

    Hunter, A.W., Oji, T., Ewin, T.A.M. & Kitazawa, K. (2011) New species of isocrinid crinoids Chariocrinus japonicas (Articulata, Echinodermata) from the Lower Cretaceous Mitarai Formation (Tetori Group) of Takayama district, central Japan. Bulletin of the Mizunami Fossil Museum, 37, 115–121.

    Kalita, K.D. (2015) New report of Isocrinid crinoid Chariocrinus from the Jurassic of Jaisalmer, Rajasthan, India. Journal of the Geological Society of India, 86, 597–604.

    https://doi.org/10.1007/s12594-015-0350-0

    Kryza, R., Crowley, Q.G., Larionov, A., Pin, C., Oberc-Dziedzic, T. & Mochnacka, K. (2012) Chemical abrasion applied to SHRIMP zircon geochronology: An example from the Variscan Karkonosze Granite (Sudetes, SW Poland). Gondwana Research, 21, 757–767.

    https://doi.org/10.1016/j.gr.2011.07.007

    Metcalfe, I., Crowley, J.L., Nicoll, R.S. & Schmitz, M. (2015) High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research, 28, 61–81.

    https://doi.org/10.1016/j.gr.2014.09.002

    Miller, J.S. (1821) A Natural History of the Crinoidea or Lily-shaped Animals, with Observations on the Genera Asteria, Euryale, Comatula and Marsupites. Bryan and Co., Bristol, 150 pp.

    Milner, G.J. (1989) The first record of an isocrinid crinoid from the Tertiary of Australia. Records of Western Australian Museum, 14, 385–389.

    Mu, A.T. & Wu, Y.R. (1974) Triassic crinoids. In: Nanjing Institute of Geologyand Palaeontology of Chinese Academy of Sciences (Ed.), A Handbookof the Stratigraphy and Palaeontology of Southwest China. Science Press, Beijing, pp. 353–354. [in Chinese]

    Noetling, F. (1892) Preliminary report on the economic resources of the amber and jade mine areas in Upper Burma. Records of the Geological Survey of India, 25, 130–135.

    Noetling, F. (1893) On the occurrence of Burmite, a new fossil resin from Upper Burma. Records of the Geological Survey of India, 26, 31–40.

    Norris, G., Jarzen, D.M. & Awai-Thorne, B.V. (1975) Evolution of the Cretaceous terrestrial palynoflora in western Canada. The Geological Association of Canada Special Paper, 13, 333–364.

    Oji, T. (1985) Early Cretaceous Isocrinus from northeast Japan. Palaeontology, 28, 629–642.

    Rasmussen, H.W. (1961) A monograph on Cretaceous crinoidea. Biologiske Skrifter Kgl Dansk Videnskabernes Selskab Kobenhavn, 12 (I), 428 pp.

    Rasmussen, H.W. (1978) Articulata. In: Moore, R.C. & Teichert, C. (Eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2 (3). Geological Society of America, Boulder, Colorado and University of Kansas, Lawrence, Kansas, pp. T813–T928.

    Rasnitsyn, A.P. (1996) Burmese amber at the Natural History Museum. Inclusion, 23, 19–21.

    Ross A.J. (2015) Insects in Burmese amber. Entomologentagung 02.–05.03.2015 Frankfurt am Main, Programm und Abstracts, 72.

    Ross, A.J. (2018) Burmese (Myanmar) amber taxa, on-line checklist v.2018.2. Available from: http://www.nms.ac.uk/explore/stories/natural-world/burmese-amber/ (Accessed 28 Dec. 2018)

    Sahni, M.R. & Sastri, V.V. (1957) A monograph of the orbitolines found in the Indian continent (Chitral, Gilgit, Kashmir), Tibet and Burma, with observations on the age of the associated volcanic series. Palaeontologia Indica, 33 (3), 50.

    Salamom, M.A. (2008) The Callovian (Middle Jurassic) crinoids from the black clays of the Lukow area, eastern Poland. Neues Jahrbuch für Geologie und Paläontologie-Abhandlungen, 247, 133–146.

    https://doi.org/10.1127/0077-7749/2008/0247-0133

    Selden, P.A. & Ren, D. (2017) A review of Burmese amber arachnids. Journal of Arachnology, 45 (3), 324–343.

    https://doi.org/10.1636/JoA-S-17-029

    Shi, G.H., Grimaldi, D.A., Harlow, G.E., Wang, J., Wang, J., Yang, M.C., Lei, W.Y., Li, Q.L. & Li, X.H. (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretaceous Research, 37, 155–163.

    Sieverts-Doreck, H. (1952) ‘Orders of the Articulata’. 614. In: Moore, R.C., Lalicker, C.G. & Fischer, A.G. (Eds.), Invertebrate fossils. McGraw-Hill, New York, 766 pp.

    Simms, M.J. (1989) British Lower Jurassic crinoids. Monographs of the Palaeontographical Society London, 581, 1–103.

    Simms, M.J. (1994) Crinoids from the Chambara Formation, Pucará Group, central Peru. Palaeontographica, Abteilung A, 233, 169–175.

    Simms, M.J. (1999) Systematics, phylogeny and evolutionary history. In: Hess, H., Ausich, W.I., Brett, C.E. & Simms, M.J. (Eds.), Fossil crinoids. Cambridge University Press, Cambridge, pp. 31–40.

    Singh, C. (1975) Stratigraphic significance of early angiosperm pollen in the mid-Cretaceous strata of Alberta. The Geological Association of Canada Special Paper, 13, 365–389.

    Smith, R.D. & Ross, A.J. (2017) Amberground pholadid bivalve borings and inclusions in Burmese amber: implications for proximity of resin–producing forests to brackish waters, and the age of the amber. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 107, 239–247.

    https://doi.org/10.1017/S1755691017000287

    Stuart, M. (1923) Geological traverses from Assam to Myitkyina, through the Hukong Valley; Myitkyina to northern Putao; and Myitkyina to the Chinese frontier. Records of the Geological Survey of India, 54, 398–411.

    Stanley, Jr., G.D. (2003) The evolution of modern corals and their early history. Earth-Science Reviews, 60, 195–225.

    https://doi.org/10.1016/S0012-8252(02)00104-6

    Stiller, F. (2011) An early isocrinid sea lily from the middle to late Anisian boundary (Middle Triassic) of south west China–evidence for a far east Tethyan origin of the family Isocrinidae. Palaeontology, 54, 1415–1433.

    https://doi.org/10.1111/j.1475-4983.2011.01101.x

    Twitchett, R.J. & Oji, T. (2005) Early Triassic recovery of echinoderms. Comptes Rendus Palevol, 4, 531–542.

    https://doi.org/10.1016/j.crpv.2005.02.006

    Vermeij, G.J. (1977) The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology, 2, 245–258.

    Wang, L.L., Hu, D.Y., Zhang, L.J., Zheng, S.L., He, H.Y., Deng, C.L., Wang, X.L., Zhou, Z.H. & Zhu, R.X. (2013) SIMS U-Pb zircon age of Jurassic sediments in Linglongta, Jianchang, western Liaoning, Constraint on the age of oldest feathered dinosaurs. Chinese Science Bulletin, 58 (14), 1346–1353. [in Chinese]

    Wright, C.W., Calloman, J.H. & Howarth, M.K. (1996) Cretaceous Ammonoidea, Treatise on Invertebrate Paleontology, Part L Mollusca 4 Revised, vol. 36. The Geological Society of America and the University of Kansas, Boulder, Colorado, Lawrence, 362 pp.

    Wu, Q., Ramezani, J., Zhang, H., Wang, T.T., Yuan, D.X., Mu, L., Zhang, Y.C., Li, X.H. & Shen, S.Z. (2016) Calibrating the Guadalupian Series (Middle Permian) of South China. Palaeogeography Palaeoclimatology Palaeoecology, 466, 361–372.

    https://doi.org/10.1016/j.palaeo.2016.11.011

    Yu, J.X., Guo, Z.Y. & Mao, S.Z. (1983) Cretaceous palynological assemblages from the district south of the Songhua River. Professional Papers of Stratigraphy and Palaeontology, 10, 1–86. [in Chinese with English summary]

    Zherikhin, V.V. & Ross, A.J. (2000) A review of the history, geology and age of Burmese amber (Burmite). Bulletin of the Natural History Museum (Geology Series), 561, 3–10.

    Zittel, K.A. von. (1879) Handbuch der Paläontologie. I. Protozoa, Coelenterata, Echinodermata und Molluscoidea. München & Leipzig, 765 pp.