Skip to main content
Log in

Abstract

The synthesis and photochemical characterization of two porphyrin-fullerene dyads, two zinc porphyrin-fullerene dyads, and a carotenobuckminsterfullerene are reviewed. In these molecules, the fullerene first excited singlet state may be formed by direct excitation or by singlet-singlet energy transfer from the attached pigment. In polar solvents, the dominant singlet-state decay pathway is photoinduced electron transfer to yield the pigment radical cation and fullerene radical anion. This charge-separated state has a long lifetime relative to the time constant for charge separation. In toluene, in cases where photoinduced electron transfer is slow for thermodynamic reasons, the fullerene singlet state decays by intersystem crossing, and the resulting triplet energy is partitioned between the components of the dyad according to their triplet energies. The results suggest that fullerenes can be valuable components of photochemically active multicomponent molecular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Gust and T. A. Moore, Adv. Photochem. 16, 1 (1991).

    Article  CAS  Google Scholar 

  2. D. Gust, T. A. Moore and A. L. Moore, Acc. Chem. Res. 26, 198 (1993).

    Article  CAS  Google Scholar 

  3. D. Gust and T. A. Moore in The Photosynthetic Reaction Center, J. R. Norris and J. Deisenhofer (Eds.), Academic Press, (1993) p. 419.

  4. M. R. Wasielewski, Chem. Rev. 92, 435 (1992).

    Article  CAS  Google Scholar 

  5. M. Bixon, J. Fajer, G. Feher, J. H. Freed, D. Gamliel, A. J. Hoff, H. Levanon, K. Mobius, R. Nechushtai, J. R. Norris, A. Scherz, J. L. Sessler and D. Stehlik, Israel J. Chem. 32, 449 (1992).

    Google Scholar 

  6. T. Asahi, M. Ohkohehi, R. Matsusaka, N. Mataga, R. P. Zhang, A. Osuka and K. Maruyama, J. Am. Chem. Soc. 115, 5665 (1993).

    Article  CAS  Google Scholar 

  7. D. Gust, T. A. Moore, A. L. Moore, S.-J. Lee, E. Bittersmann, D. K. Luttrull, A. A. Rehms, J. M. DeGraziano, X. C. Ma, F. Gao, R. E. Belford and T. T. Trier, Science 248, 199 (1990).

    Article  CAS  Google Scholar 

  8. D. Gust, T. A. Moore, A. L. Moore, A. N. Macpherson, A. Lopez, J. M. DeGraziano, I. Gouni, E. Bittersmann, G. R. Seely, F. Gao, R. A. Nieman, X. C. Ma, L. Demanche, D. K. Luttrull, S.-J. Lee and P. K. Kerrigan, J. Am. Chem. Soc. 115, 11141 (1993).

    Article  CAS  Google Scholar 

  9. See reference 19 and references cited therein.

  10. P. Liddell, A. N. Macpherson, J. Sumida, L. Demanche, A. L. Moore, T. A. Moore and D. Gust, Photochem. Photobiol. 59S, 36S (1994).

    Google Scholar 

  11. P. A. Liddell, J. P. Sumida, A. N. Macpherson, L. Noss, G. R. Seely, K. N. Clark, A. L. Moore, T. A. Moore and D. Gust, Photochem. Photobiol. 60, 537 (1994).

    Article  CAS  Google Scholar 

  12. D. Kuciauskas, S. Lin, G. R. Seely, A. L. Moore, T. A. Moore, D. Gust, T. Drovetskaya, C. A. Reed and P. D. W. Boyd, J. Phys. Chem. 100, 15926 (1996).

    Article  CAS  Google Scholar 

  13. H. Imahori, K. Hagiwara, T. Akiyama, S. Taniguchi, T. Okada and Y. Sakata, Chem. Lett. 265 (1995).

  14. T. G. Linssen, K. Durr, M. Hanack and Q. Hirsch, J. Chem. Soc., Chem. Commun. 103 (1995).

  15. M. Maggini, A. Dono, G. Scorrano and M. Prato, J. Chem. Soc., Chem. Commun. 843 (1995).

  16. M. Maggini, A. Karlsson, G. Scorrano, G. Sandona, G. Farina and M. Prato, J. Chem. Soc., Chem. Commun. 589 (1994).

  17. T. Drovetskaya, C. A. Reed and P. D. W. Boyd, Tetrahedron Lett. 36, 7971 (1995).

    Article  CAS  Google Scholar 

  18. H. Imahori, S. Cardoso, D. Tatman, S. Lin, A. N. Macpherson, L. Noss, G. R. Seely, L. Sereno, J. Chessa de Silber, T. A. Moore, A. L. Moore and D. Gust, Photochem. Photobiol. 62, 1009 (1995).

    Article  CAS  Google Scholar 

  19. R. M. Williams, J. M. Zwier and J. W. Verhoeven, J. Am. Chem. Soc. 117, 4093 (1995).

    Article  CAS  Google Scholar 

  20. H. Imahori and Y. Sakata, Chem. Lett. 199 (1996).

  21. R. M. Williams, M. Koeberg, J. M. Lawson, Y.-Z. An, Y. Rubin, M. N. Paddon-Row and J. W. Verhoeven, J. Org. Chem. 61, 5055 (1996).

    Article  CAS  Google Scholar 

  22. L. Isaacs and F. Diederich, Helv. Chim. Acta 76, 2454 (1993).

    Article  CAS  Google Scholar 

  23. M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc. 115, 9798 (1993).

    Article  CAS  Google Scholar 

  24. R. E. Belford, G. R. Seely, D. Gust, T. A. Moore, A. L. Moore, N. J. Cherepy, S. Ekbundit, J. E. Lewis and S. H. Lin, J. Photochem. Photobiol. A: Chem. 70, 125 (1993).

    Article  CAS  Google Scholar 

  25. G. Egorova, V. Knyukshto, K. Solovev and M. Tsvirko, Opt. Spectrosc. (USSR) 48, 1101 (1980).

    CAS  Google Scholar 

  26. M. Gouterman and G.-M. Khalil, J. Mol. Spectrosc. 53, 88 (1974).

    Article  CAS  Google Scholar 

  27. A. Harriman, J. Chem. Soc., Faraday Trans. I 76, 1978 (1980).

    Article  CAS  Google Scholar 

  28. P. A. Liddell, L. J. Demanche, S. Li, A. N. Macpherson, R. A. Nieman, A. L. Moore, T. A. Moore and D. Gust, Tetrahedron Lett. 35, 995 (1994).

    Article  CAS  Google Scholar 

  29. R. A. Marcus, J. Chem. Phys. 24, 966 (1956).

    Article  CAS  Google Scholar 

  30. R. Marcus and N. Sutin, Biochim. Biophys. Acta 811, 265 (1985).

    CAS  Google Scholar 

  31. V. Levich, Adv. Electrochem. Electrochem. Eng. 4, 249 (1966).

    CAS  Google Scholar 

  32. A. Weller, Z. Physik. Chem. NF 133, 93 (1982).

    CAS  Google Scholar 

  33. J. A. Schmidt, J.-Y. Liu, J. R. Bolton, M. D. Archer and V. P. Y. Gadzekpo, J. Chem. Soc. Faraday Trans. I 85, 1027 (1989).

    Article  CAS  Google Scholar 

  34. G. L. I. Gaines, M. P. O’Neil, W. A. Svec, M. P. Niemczyk and M. R. Wasielewski, J. Am. Chem. Soc. 113, 719 (1991).

    Article  CAS  Google Scholar 

  35. P. A. Liddell, D. Kuciauskas, J. P. Sumida, B. Nash, D. Nguyen, A. L. Moore, T. A. Moore and D. Gust, J. Am. Chem. Soc. 119, (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gust, D., Moore, T.A. & Moore, A.L. Fullerenes linked to photosynthetic pigments. Res. Chem. Intermed. 23, 621–651 (1997). https://doi.org/10.1163/156856797X00042

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856797X00042

Keywords

Navigation