Skip to main content
Log in

Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

The effect of synthesis conditions on morphology and catalytic activity has been studied for hydrothermal preparation of TiO2 from acidified aqueous TiOSO4 solution. It was found that the increase in TiOSO4 and H2SO4 concentration results in the increase of photocatalytic activity of produced TiO2, as it was revealed by steady-state gas-phase oxidation of acetone and ethanol vapors in a flow-circulating reactor. TiOSO4 concentration exerts strong influence on the shape of the produced TiO2 particles. At TiOSO4 concentration less than 0.1 wt%, hydrolysis gives rise to hedgehog-like agglomerates consisting of spliced-blade TiO2 nanocrystals. At higher concentration of TiOSO4, the resultant TiO2 consists of round agglomerates of 5–10 nm primary particles. The size of secondary particles depends mainly on the H2SO4 concentration. The increase of the time of hydrothermal treatment results in the enhancement of TiO2 photocatalytic activity that reaches a maximum. Among different acids (HCl, HClO4, HNO3, H3PO4 and CH3COOH) added during hydrolysis of TiOSO4, sulfuric and acetic acids had the best effect on photocatalytic activity of TiO2. The results obtained can help to finely tune this TiO2 preparation method in order to obtain desirable particles size, shape and activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Hashimoto and T. Watanabe, TiO 2 Photocatalysis, BCK, Tokyo (1999).

    Google Scholar 

  2. T. Ohno, K. Sarukawa and M. Matsumura, J. Phys. Chem. B 105, 2417 (2001).

    Article  CAS  Google Scholar 

  3. A. J. Maira, K. L. Yeung, C. Y. Lee, P. L. Yue and C. K. Chan, J. Catal, 192, 185 (2000).

    Article  CAS  Google Scholar 

  4. G. Goutailler, C. Guillard, S. Daniele and L. G. Hubert-Pfalzgraf, J. Mater. Chem. 13, 342 (2003).

    Article  CAS  Google Scholar 

  5. Q. H. Zhang, L. Gao and J. K. Guo, Appl. Catal. B: Environ. 26, 207 (2000).

    Article  CAS  Google Scholar 

  6. S. E. Pratsinis and P. T. Spicer, Chem. Eng. Sci. 53, 1861 (1998).

    Article  CAS  Google Scholar 

  7. T. C. Lu, P. Song, L. B. Lin, Y. Lu, X. T. Zu and Z. J. Liao, J. Inorg. Mater. 16, 475 (2001).

    CAS  Google Scholar 

  8. U. Gesenhues, Chem. Eng. Technol. 24, 685 (2001).

    Article  CAS  Google Scholar 

  9. A. Tsevis, N. Spanos, P. G. Koutsoukos, A. J. Linde and J. Lyklema, J. Chem. Soc. Faraday Trans. 94, 295 (1998).

    Article  CAS  Google Scholar 

  10. Y. V. Kolen’ko, A. A. Burukhin, B. R. Churagulov and N. N. Oleynikov, Mater. Lett. 57, 1124 (2003).

    Article  Google Scholar 

  11. S. Ito, S. Inoue, H. Kawada, M. Hara, M. Iwasaki and H. Tada, J. Coll. Interface Sci. 216, 59 (1999).

    Article  CAS  Google Scholar 

  12. M. Inagaki, Y. Nakazawa, M. Hirano, Y. Kobayashi and M. Toyoda, Int. J. Inorg. Mater. 3, 809 (2001).

    Article  CAS  Google Scholar 

  13. M. Iwasaki, M. Hara, H. Kawada, H. Tada and S. Ito, J. Colloid Interface Sci. 224, 202 (2000).

    Article  CAS  Google Scholar 

  14. D. V. Bavykin, E. N. Savinov and P. G. Smirniotis, React. Kinet. Catal. Lett. 79, 77 (2003).

    Article  CAS  Google Scholar 

  15. S. Karvinen and R.-J. Lamminmaki, Solid State Sci. 5, 1159 (2003).

    Article  CAS  Google Scholar 

  16. F. Kh. Urakaev, L. Sh. Bazarov, I. N. Meshcheryakov, V. V. Feklistov, T. N. Drebushchak, Yu. P. Savintsev, V. I. Gordeeva and V. S. Shevchenko, J. Cryst. Growth 205, 223 (1999).

    Article  CAS  Google Scholar 

  17. M. Hirano, C. Nakahara, K. Ota, O. Tanaike and M. Inagaki, J. Solid State Chem. 170, 39 (2003).

    Article  CAS  Google Scholar 

  18. A. V. Vorontsov, A. A. Altynnikov, E. N. Savinov and E. N. Kurkin, J. Photochem. Photobiol. A: Chem. 144, 193 (2001).

    Article  CAS  Google Scholar 

  19. D. Kozlov, D. Bavykin and E. Savinov, Catal. Lett. 86, 169 (2003).

    Article  CAS  Google Scholar 

  20. A. V. Vorontsov, E. N. Savinov, G. B. Barannik, V. N. Troitsky and V. N. Parmon, Catal. Today 39, 207 (1997).

    Article  CAS  Google Scholar 

  21. A. V. Vorontsov, E. N. Savinov and Z. Jin, J. Photochem. Photobiol. A: Chem. 125, 113 (1999).

    Article  CAS  Google Scholar 

  22. M. Ahmed, H. Fjellvag and A. Kjekshus, Acta Chim. Scand., 50, 275 (1996).

    Article  CAS  Google Scholar 

  23. F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Interscience, New York, NY (1969).

    Google Scholar 

  24. P. Comba and A. Merbach, Inorg. Chem. 26, 1315 (1987).

    Article  CAS  Google Scholar 

  25. L. G. Gerasimova, R. F. Ohrimenko and N. M. Zhdanova, Lakokras. Mater. Ikh Primen. 10, 13 (1998) (in Russian).

    Google Scholar 

  26. A. V. Vorontsov and V. P. Dubovitskaya, J. Catal. 221, 102 (2004).

    Article  CAS  Google Scholar 

  27. K. Yanagisawa and J. Ovenstone, J. Phys. Chem. B. 103, 7781 (1999).

    Article  CAS  Google Scholar 

  28. M. Abdullah, G. K. C. Low and R. W. Matthews, J. Phys. Chem. 94, 6820 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Vorontsov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bavykin, D.V., Dubovitskaya, V.P., Vorontsov, A.V. et al. Effect of TiOSO4 hydrothermal hydrolysis conditions on TiO2 morphology and gas-phase oxidative activity. Res. Chem. Intermed. 33, 449–464 (2007). https://doi.org/10.1163/156856707779238702

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1163/156856707779238702

Keywords

Navigation