Background: Postthrombolysis brain haemorrhagic transformations (HT) are often categorized with the CT-based classification of the European Cooperative Acute Stroke Study (ECASS). However, little is known about the reliability of this classification and its extension to MRI. Our objective was to compare the inter- and intraobserver reliability of this classification on CT and 3 MRI sequences. Methods: Forty-three patients with postthrombolysis HT on CT or at least 1 of the 3 MRI sequences: fluid-attenuation inversion recovery (FLAIR), diffusion-weighted imaging (DWI), and T2* gradient recalled echo (T2*GRE) were selected. Twelve control patients without any bleeding were added to avoid a bias based on a pure HT-positive cohort. Each series of images were independently classified with the ECASS method by 6 blinded observers. Inter- and intraobserver reproducibility was categorized from poor to excellent depending on ĸ values. Results: The inter- and intraobserver overall concordance of the classification was good for T2*GRE, DWI and CT (ĸ > 0.6) and moderate for FLAIR (ĸ < 0.6). The interobserver concordance for parenchymal haematomas was excellent for T2*GRE (ĸ > 0.8) and moderate for CT, FLAIR and DWI. Conclusion: The T2*GRE sequence is the most reproducible method to categorize postthrombolysis HT and has an excellent reliability for the severe parenchymal haematoma category, suggesting that this sequence should be used to assess HT in thrombolytic therapy trials.

1.
Lansberg MG, Albers GW, Wijman CA: Symptomatic intracerebral hemorrhage following thrombolytic therapy for acute ischemic stroke: a review of the risk factors. Cerebrovasc Dis 2007;24:1–10.
2.
Marti-Fabregas J, Bravo Y, Cocho D, Marti-Vilalta JL, Diaz-Manera J, San Roman L, Puig M, Blanco M, Castellanos M, Millan M, Roquer J, Obach V, Maestre J: Frequency and predictors of symptomatic intracerebral hemorrhage in patients with ischemic stroke treated with recombinant tissue plasminogen activator outside clinical trials. Cerebrovasc Dis 2007;23:85–90.
3.
Tissue plasminogen activator for acute ischemic stroke. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. N Engl J Med 1995;333:1581–1587.
4.
Hacke W, Kaste M, Fieschi C, von Kummer R, Davalos A, Meier D, Larrue V, Bluhmki E, Davis S, Donnan G, Schneider D, Diez-Tejedor E, Trouillas P: Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Second European-Australasian Acute Stroke Study Investigators. Lancet 1998;352:1245–1251.
5.
Hacke W, Albers G, Al-Rawi Y, Bogousslavsky J, Davalos A, Eliasziw M, Fischer M, Furlan A, Kaste M, Lees KR, Soehngen M, Warach S: The Desmoteplase in Acute Ischemic Stroke Trial (DIAS): a phase II MRI-based 9-hour window acute stroke thrombolysis trial with intravenous desmoteplase. Stroke 2005;36:66–73.
6.
Hill MD, Buchan AM: Thrombolysis for acute ischemic stroke: results of the Canadian Alteplase for Stroke Effectiveness Study. Cmaj 2005;172:1307–1312.
7.
Wahlgren N, Ahmed N, Davalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, Lees KR, Roine RO, Soinne L, Toni D, Vanhooren G: Thrombolysis with alteplase for acute ischaemic stroke in the Safe Implementation of Thrombolysis in Stroke-Monitoring Study (SITS-MOST): an observational study. Lancet 2007;369:275–282.
8.
Albers GW, Thijs VN, Wechsler L, Kemp S, Schlaug G, Skalabrin E, Bammer R, Kakuda W, Lansberg MG, Shuaib A, Coplin W, Hamilton S, Moseley M, Marks MP: Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol 2006;60:508–517.
9.
Berger C, Fiorelli M, Steiner T, Schabitz WR, Bozzao L, Bluhmki E, Hacke W, von Kummer R: Hemorrhagic transformation of ischemic brain tissue: asymptomatic or symptomatic? Stroke 2001;32:1330–1335.
10.
Christoforidis GA, Slivka A, Mohammad Y, Karakasis C, Avutu B, Yang M: Size matters: hemorrhage volume as an objective measure to define significant intracranial hemorrhage associated with thrombolysis. Stroke 2007;38:1799–1804.
11.
Dzialowski I, Pexman JH, Barber PA, Demchuk AM, Buchan AM, Hill MD: Asymptomatic hemorrhage after thrombolysis may not be benign: prognosis by hemorrhage type in the Canadian alteplase for stroke effectiveness study registry. Stroke 2007;38:75–79.
12.
Fiorelli M, Bastianello S, von Kummer R, del Zoppo GJ, Larrue V, Lesaffre E, Ringleb AP, Lorenzano S, Manelfe C, Bozzao L: Hemorrhagic transformation within 36 hours of a cerebral infarct: relationships with early clinical deterioration and 3-month outcome in the European Cooperative Acute Stroke Study I (ECASS I) cohort. Stroke 1999;30:2280–2284.
13.
Thomalla G, Sobesky J, Kohrmann M, Fiebach JB, Fiehler J, Zaro Weber O, Kruetzelmann A, Kucinski T, Rosenkranz M, Rother J, Schellinger PD: Two tales: hemorrhagic transformation but not parenchymal hemorrhage after thrombolysis is related to severity and duration of ischemia: MRI study of acute stroke patients treated with intravenous tissue plasminogen activator within 6 h. Stroke 2007;38:313–318.
14.
Trouillas P, von Kummer R: Classification and pathogenesis of cerebral hemorrhages after thrombolysis in ischemic stroke. Stroke 2006;37:556–561.
15.
Hacke W, Donnan G, Fieschi C, Kaste M, von Kummer R, Broderick JP, Brott T, Frankel M, Grotta JC, Haley EC, Jr, Kwiatkowski T, Levine SR, Lewandowski C, Lu M, Lyden P, Marler JR, Patel S, Tilley BC, Albers G, Bluhmki E, Wilhelm M, Hamilton S: Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 2004;363:768–774.
16.
Solling C, Hjort N, Ashkanian M, Ostergaard L, Andersen G: Safety and efficacy of MRI-based selection for recombinant tissue plasminogen activator treatment: responder analysis of outcome in the 3-hour time window. Cerebrovasc Dis 2009;27:223–229.
17.
Arnould MC, Grandin CB, Peeters A, Cosnard G, Duprez TP: Comparison of CT and three MR sequences for detecting and categorizing early (48 hours) hemorrhagic transformation in hyperacute ischemic stroke. AJNR Am J Neuroradiol 2004;25:939–944.
18.
Fiebach JB, Schellinger PD, Gass A, Kucinski T, Siebler M, Villringer A, Olkers P, Hirsch JG, Heiland S, Wilde P, Jansen O, Rother J, Hacke W, Sartor K: Stroke magnetic resonance imaging is accurate in hyperacute intracerebral hemorrhage: a multicenter study on the validity of stroke imaging. Stroke 2004;35:502–506.
19.
Kidwell CS, Chalela JA, Saver JL, Starkman S, Hill MD, Demchuk AM, Butman JA, Patronas N, Alger JR, Latour LL, Luby ML, Baird AE, Leary MC, Tremwel M, Ovbiagele B, Fredieu A, Suzuki S, Villablanca JP, Davis S, Dunn B, Todd JW, Ezzeddine MA, Haymore J, Lynch JK, Davis L, Warach S: Comparison of MRI and CT for detection of acute intracerebral hemorrhage. JAMA 2004;292:1823–1830.
20.
Kent DM, Hinchey J, Price LL, Levine SR, Selker HP: In acute ischemic stroke, are asymptomatic intracranial hemorrhages clinically innocuous? Stroke 2004;35:1141–1146.
21.
Burgess RE, Warach S, Schaewe TJ, Copenhaver BR, Alger JR, Vespa P, Martin N, Saver JL, Kidwell CS: Development and validation of a simple conversion model for comparison of intracerebral hemorrhage volumes measured on CT and gradient recalled echo MRI. Stroke 2008;39:2017–2020.
22.
Schellinger PD, Jansen O, Fiebach JB, Hacke W, Sartor K: A standardized MRI stroke protocol: comparison with CT in hyperacute intracerebral hemorrhage. Stroke 1999;30:765–768.
23.
Mak HK, Yau KK, Chan BP: Prevalence-adjusted bias-adjusted kappa values as additional indicators to measure observer agreement. Radiology 2004;232:302–303.
Copyright / Drug Dosage / Disclaimer
Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.
You do not currently have access to this content.