1932

Abstract

Scene processing is fundamentally influenced and constrained by spatial layout and spatial associations with objects. However, semantic information has played a vital role in propelling our understanding of real-world scene perception forward. In this article, we review recent advances in assessing how spatial layout and spatial relations influence scene processing. We examine the organization of the larger environment and how we take full advantage of spatial configurations independently of semantic information. We demonstrate that a clear differentiation of spatial from semantic information is necessary to advance research in the field of scene processing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121219-081745
2020-09-15
2024-04-26
Loading full text...

Full text loading...

/deliver/fulltext/vision/6/1/annurev-vision-121219-081745.html?itemId=/content/journals/10.1146/annurev-vision-121219-081745&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen GJ, Ni R, Bian Z, Kang J 2011. Limits of spatial attention in three-dimensional space and dual-task driving performance. Accid. Anal. Prev. 43:1381–90
    [Google Scholar]
  2. Baldassano C, Beck DDM, Fei-Fei L 2013. Differential connectivity within the parahippocampal place area. NeuroImage 75:228–37
    [Google Scholar]
  3. Bar M. 2004. Visual objects in context. Nat. Rev. Neurosci. 5:8617–29
    [Google Scholar]
  4. Biederman I. 1987. Recognition-by-components: a theory of human image understanding. Psychol. Rev. 94:2115–47
    [Google Scholar]
  5. Biederman I, Gerhardstein PC. 1993. Recognizing depth-rotated objects: evidence and conditions for three-dimensional viewpoint invariance. J. Exp. Psychol. Hum. Percept. Perform. 19:1162–82
    [Google Scholar]
  6. Biederman I, Gerhardstein PC. 1995. Viewpoint-dependent mechanisms in visual object recognition: reply to Tarr and Bülthoff 1995. J. Exp. Psychol. Hum. Percept. Perform. 21:61506–14
    [Google Scholar]
  7. Biederman I, Glass AL, Stacy EW 1973. Searching for objects in real-world scenes. J. Exp. Psychol. 97:122–27
    [Google Scholar]
  8. Biederman I, Mezzanotte RJ, Rabinowitz JC 1982. Scene perception: detecting and judging objects undergoing relational violations. Cogn. Psychol. 14:2143–77
    [Google Scholar]
  9. Bonner MF, Epstein RA. 2017. Coding of navigational affordances in the human visual system. PNAS 114:184793–98
    [Google Scholar]
  10. Bonner MF, Epstein RA. 2018. Computational mechanisms underlying cortical responses to the affordance properties of visual scenes. PLOS Comput. Biol. 14:4e1006111
    [Google Scholar]
  11. Boyce SJ, Pollatsek A, Rayner K 1989. Effect of background information on object identification. J. Exp. Psychol. Hum. Percept. Perform. 15:3556–66
    [Google Scholar]
  12. Brockmole JR, Castelhano MS, Henderson JM 2006. Contextual cueing in naturalistic scenes: global and local contexts. J. Exp. Psychol. Learn. Mem. Cogn. 32:4699–706
    [Google Scholar]
  13. Brooks DI, Rasmussen IP, Hollingworth A 2010. The nesting of search contexts within natural scenes: evidence from contextual cuing. J. Exp. Psychol. Hum. Percept. Perform. 36:61406–18
    [Google Scholar]
  14. Bülthoff I, Bülthoff HH. 2003. Image-based recognition of biological motion, scenes, and objects. Perception of Faces, Objects, and Scenes: Analytic and Holistic Processes MA Peterson, G Rhodes 146–72 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  15. Burgess N, Spiers HJ, Paleologou E 2004. Orientational manoeuvres in the dark: dissociating allocentric and egocentric influences on spatial memory. Cognition 94:2149–66
    [Google Scholar]
  16. Cain MS, Vul E, Clark K, Mitroff SR 2012. A Bayesian optimal foraging model of human visual search. Psychol. Sci. 23:91047–54
    [Google Scholar]
  17. Castelhano MS, Fernandes S, Theriault J 2019. Examining the hierarchical nature of scene representations in memory. J. Exp. Psychol. Learn. Mem. Cogn. 45:91619–33
    [Google Scholar]
  18. Castelhano MS, Heaven C. 2010. The relative contribution of scene context and target features to visual search in scenes. Atten. Percept. Psychophys. 72:51283–97
    [Google Scholar]
  19. Castelhano MS, Heaven C. 2011. Scene context influences without scene gist: eye movements guided by spatial associations in visual search. Psychon. Bull. Rev. 18:5890–96
    [Google Scholar]
  20. Castelhano MS, Henderson JM. 2005. Incidental visual memory for objects in scenes. Vis. Cogn. 12:61017–40
    [Google Scholar]
  21. Castelhano MS, Henderson JM. 2007. Initial scene representations facilitate eye movement guidance in visual search. J. Exp. Psychol. Hum. Percept. Perform. 33:4753–63
    [Google Scholar]
  22. Castelhano MS, Henderson JM. 2008. The influence of color on the perception of scene gist. J. Exp. Psychol. Hum. Percept. Perform. 34:3660–75
    [Google Scholar]
  23. Castelhano MS, Pereira EJ. 2018. The influence of scene context on parafoveal processing of objects. Q. J. Exp. Psychol. 71:1229–40
    [Google Scholar]
  24. Castelhano MS, Pollatsek A. 2010. Extrapolating spatial layout in scene representations. Mem. Cogn. 38:81018–25
    [Google Scholar]
  25. Castelhano MS, Pollatsek A, Rayner K 2009. Integration of multiple views of scenes. Atten. Percept. Psychophys. 71:3490–502
    [Google Scholar]
  26. Castelhano MS, Witherspoon RL. 2016. How you use it matters: object function guides attention during visual search in scenes. Psychol. Sci. 27:5606–21
    [Google Scholar]
  27. Christou CG, Bülthoff HH. 1999. View dependence in scene recognition after active learning. Mem. Cogn. 27:6996–1007
    [Google Scholar]
  28. Chun MM. 2000. Contextual cueing of visual attention. Trends Cogn. Sci. 4:5170–78
    [Google Scholar]
  29. Collegio AJ, Nah JC, Scotti PS, Shomstein S 2019. Attention scales according to inferred real-world object size. Nat. Hum. Behav. 3:140–47
    [Google Scholar]
  30. Costantini M, Ambrosini E, Scorolli C, Borghi AM 2011. When objects are close to me: affordances in the peripersonal space. Psychon. Bull. Rev. 18:2302–8
    [Google Scholar]
  31. Cutting JE, Vishton PM. 1995. Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. Handbook of Perception and Cognition W Epstein, SJ Rogers 69–117 Cambridge, MA: Academic. , 2nd ed..
    [Google Scholar]
  32. Davenport JL, Potter MC. 2004. Scene consistency in object and background perception. Psychol. Sci. 15:8559–64
    [Google Scholar]
  33. De Graef P, Christiaens D, D'Ydewalle G 1990. Perceptual effects of scene context on object identification. Psychol. Res. 52:4317–29
    [Google Scholar]
  34. De Graef P, De Troy A, D'Ydewalle G 1992. Local and global contextual constraints on the identification of objects in scenes. Can. J. Psychol. Rev. Can. Psychol. 46:3489–508
    [Google Scholar]
  35. de la Rosa S, Moraglia G, Schneider BA 2008. The magnitude of binocular disparity modulates search time for targets defined by a conjunction of depth and colour. Can. J. Exp. Psychol. Rev. Can. Psychol. Exp. 62:3150–55
    [Google Scholar]
  36. Denison RN, Yuval-Greenberg S, Carrasco M 2019. Directing voluntary temporal attention increases fixational stability. J. Neurosci. 39:2353–63
    [Google Scholar]
  37. Downing CJ, Pinker S. 1985. The spatial structure of visual attention. Attention and Performance, Vol. XI: Mechanisms of Attention and Visual Search MI Posner, OSM Martin 171–87 Hillsdale, NJ: Erlbaum
    [Google Scholar]
  38. Draschkow D, ML-H. 2017. Scene grammar shapes the way we interact with objects, strengthens memories, and speeds search. Sci. Rep. 7:116471
    [Google Scholar]
  39. Eckstein MP, Drescher BA, Shimozaki SS 2006. Attentional cues in real scenes, saccadic targeting, and Bayesian priors. Psychol. Sci. 17:11973–80
    [Google Scholar]
  40. Edelman S. 1999. Representation and Recognition in Vision Cambridge, MA: MIT Press
  41. Egly R, Rafal R, Driver J, Starrveveld Y 1994. Covert orienting in the split brain reveals hemispheric specialization for object-based attention. Psychol. Sci. 5:6380–83
    [Google Scholar]
  42. Epstein RA, Baker CI. 2019. Scene perception in the human brain. Annu. Rev. Vis. Sci. 5:373–97
    [Google Scholar]
  43. Epstein RA, Harris A, Stanley D, Kanwisher N 1999. The parahippocampal place area: recognition, navigation, or encoding. Neuron 23:1115–25
    [Google Scholar]
  44. Epstein RA, Higgins JS, Jablonski K, Feiler AM 2007. Visual scene processing in familiar and unfamiliar environments. J. Neurophysiol. 97:53670–83
    [Google Scholar]
  45. Epstein RA, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:6676598–601
    [Google Scholar]
  46. Fernandes S, Castelhano MS. 2019. The Foreground Bias: Initial Scene Representations Across the Depth Plane PsyArXiv. https://doi.org/10.31234/OSF.IO/S32WZ
    [Crossref]
  47. Fernández A, Denison RN, Carrasco M 2019. Temporal attention improves perception similarly at foveal and parafoveal locations. J. Vis. 19:112
    [Google Scholar]
  48. Ferrara K, Park S. 2016. Neural representation of scene boundaries. Neuropsychologia 89:180–90
    [Google Scholar]
  49. Finlayson NJ, Grove PM. 2015. Visual search is influenced by 3D spatial layout. Atten. Percept. Psychophys. 77:72322–30
    [Google Scholar]
  50. Foulsham T, Underwood G. 2007. How does the purpose of inspection influence the potency of visual salience in scene perception. Perception 36:81123–38
    [Google Scholar]
  51. Freyd JJ. 1987. Dynamic mental representations. Psychol. Rev. 94:4427–38
    [Google Scholar]
  52. Friedman A. 1979. Framing pictures: the role of knowledge in automatized encoding and memory for gist. J. Exp. Psychol. Gen. 108:3316–55
    [Google Scholar]
  53. Friedman A, Waller D. 2008. View combination in scene recognition. Mem. Cogn. 36:3467–78
    [Google Scholar]
  54. Gaspar JG, Ward N, Neider MB, Crowell J, Carbonari R et al. 2016. Measuring the useful field of view during simulated driving with gaze-contingent displays. Hum. Factors 58:4630–41
    [Google Scholar]
  55. Gaspelin N, Luck SJ. 2019. Inhibition as a potential resolution to the attentional capture debate. Curr. Opin. Psychol. 29:12–18
    [Google Scholar]
  56. Gauthier I, Tarr MJ. 2016. Visual object recognition: Do we (finally) know more now than we did. Annu. Rev. Vis. Sci. 2:377–96
    [Google Scholar]
  57. de Gonzaga Gawryszewski L, Riggio L, Rizzolatti G, Umiltá C 1987. Movements of attention in the three spatial dimensions and the meaning of “neutral” cues. Neuropsychologia 25:119–29
    [Google Scholar]
  58. Gibson J. 1950. The Perception of the Visual World Boston: Houghton Mifflin
  59. Gibson JJ. 1979. The Ecological Approach to Visual Perception Boston: Houghton Mifflin
  60. Greene MR. 2013. Statistics of high-level scene context. Front. Psychol. 4:777
    [Google Scholar]
  61. Greene MR, Baldassano C, Esteva A, Beck DM, Fei-Fei L 2016. Visual scenes are categorized by function. J. Exp. Psychol. Gen. 145:182–94
    [Google Scholar]
  62. Greene MR, Oliva A. 2009a. The briefest of glances: the time course of natural scene understanding. Psychol. Sci. 20:4464–72
    [Google Scholar]
  63. Greene MR, Oliva A. 2009b. Recognition of natural scenes from global properties: seeing the forest without representing the trees. Cogn. Psychol. 58:2137–76
    [Google Scholar]
  64. Greene MR, Oliva A. 2010. High-level aftereffects to global scene properties. J. Exp. Psychol. Hum. Percept. Perform. 36:61430–42
    [Google Scholar]
  65. Gronau N, Shachar M. 2015. Contextual consistency facilitates long-term memory of perceptual detail in barely seen images. J. Exp. Psychol. Hum. Percept. Perform. 41:41095–111
    [Google Scholar]
  66. Güçlü U, van Gerven MAJ 2015. Deep neural networks reveal a gradient in the complexity of neural representations across the ventral stream. J. Neurosci. 35:2710005–14
    [Google Scholar]
  67. Hassabis D, Maguire EA. 2007. Deconstructing episodic memory with construction. Trends Cogn. Sci. 11:7299–306
    [Google Scholar]
  68. Hayhoe MM, Matthis JS. 2018. Control of gaze in natural environments: effects of rewards and costs, uncertainty and memory in target selection. Interface Focus 8:420180009
    [Google Scholar]
  69. He C, Peelen MV, Han Z, Lin N, Caramazza A, Bi Y 2013. Selectivity for large nonmanipulable objects in scene-selective visual cortex does not require visual experience. NeuroImage 79:1–9
    [Google Scholar]
  70. Henderson JM, Larson CL, Zhu DC 2008. Full scenes produce more activation than close-up scenes and scene-diagnostic objects in parahippocampal and retrosplenial cortex: an fMRI study. Brain Cogn 66:140–49
    [Google Scholar]
  71. Henderson JM, Weeks PAJ, Hollingworth A 1999. The effects of semantic consistency on eye movements during complex scene viewing. J. Exp. Psychol. Hum. Percept. Perform. 25:1210–28
    [Google Scholar]
  72. Henderson JM, Zhu DC, Larson CL 2011. Functions of parahippocampal place area and retrosplenial cortex in real-world scene analysis: an fMRI study. Vis. Cogn. 19:7910–27
    [Google Scholar]
  73. Hillstrom AP, Segabinazi JD, Godwin HJ, Liversedge SP, Benson V 2017. Cat and mouse search: the influence of scene and object analysis on eye movements when targets change locations during search. Phil. Trans. R. Soc. Lond. B 372:171420160106
    [Google Scholar]
  74. Hirtle SC, Jonides J. 1985. Evidence of hierarchies in cognitive maps. Mem. Cogn. 13:3208–17
    [Google Scholar]
  75. Hollingworth A. 2005. Memory for object position in natural scenes. Vis. Cogn. 12:61003–16
    [Google Scholar]
  76. Hollingworth A. 2006. Scene and position specificity in visual memory for objects. J. Exp. Psychol. Learn. Mem. Cogn. 32:158–69
    [Google Scholar]
  77. Hollingworth A, Henderson JM. 1999. Object identification is isolated from scene semantic constraint: evidence from object type and token discrimination. Acta Psychol 102:2–3319–43
    [Google Scholar]
  78. Hollingworth A, Rasmussen IP. 2010. Binding objects to locations: the relationship between object files and visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 36:3543–64
    [Google Scholar]
  79. Intraub H. 2010. Rethinking scene perception: a multisource model. Psychol. Learn. Motiv. 52:231–64
    [Google Scholar]
  80. Intraub H, Richardson M. 1989. Wide-angle memories of close-up scenes. J. Exp. Psychol. Learn. Mem. Cogn. 15:2179–87
    [Google Scholar]
  81. Josephs EL, Konkle T. 2019. Perceptual dissociations among views of objects, scenes, and reachable spaces. J. Exp. Psychol. Hum. Percept. Perform. 45:6715–28
    [Google Scholar]
  82. Joubert OR, Rousselet GA, Fize D, Fabre-Thorpe M 2007. Processing scene context: fast categorization and object interference. Vis. Res. 47:263286–97
    [Google Scholar]
  83. Kaakinen JK, Hyönä J, Viljanen M 2011. Influence of a psychological perspective on scene viewing and memory for scenes. Q. J. Exp. Psychol. 64:71372–87
    [Google Scholar]
  84. Kahneman D, Treisman A, Gibbs BJ 1992. The reviewing of object files: object-specific integration of information. Cogn. Psychol. 24:2175–219
    [Google Scholar]
  85. Kaiser D, Cichy RM. 2018. Typical visual-field locations facilitate access to awareness for everyday objects. Cognition 180:118–22
    [Google Scholar]
  86. Kaiser D, Quek GL, Cichy RM, Peelen MV 2019. Object vision in a structured world. Trends Cogn. Sci. 23:8672–85
    [Google Scholar]
  87. Kaiser D, Stein T, Peelen MV 2014. Object grouping based on real-world regularities facilitates perception by reducing competitive interactions in visual cortex. PNAS 111:3011217–22
    [Google Scholar]
  88. Kamps FS, Lall V, Dilks DD 2016. The occipital place area represents first-person perspective motion information through scenes. Cortex 83:17–26
    [Google Scholar]
  89. Karklin Y, Lewicki MS. 2005. A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput 17:2397–423
    [Google Scholar]
  90. Karklin Y, Lewicki MS. 2009. Emergence of complex cell properties by learning to generalize in natural scenes. Nature 457:722583–86
    [Google Scholar]
  91. Katti H, Peelen MV, Arun SP 2016. Deep neural networks can be improved using human-derived contextual expectations. arXiv:1611.07218 [cs.CV]
    [Google Scholar]
  92. Kit D, Katz L, Sullivan B, Snyder K, Ballard D, Hayhoe M 2014. Eye movements, visual search and scene memory, in an immersive virtual environment. PLOS ONE 9:4e94362
    [Google Scholar]
  93. Konkle T, Olivia A. 2007. Normative representation of objects: evidence for an ecological bias in object perception and memory. Proceedings of the Annual Meeting of the Cognitive Science Society Vol 29407–12 Austin, TX: Cogn. Sci. Soc.
    [Google Scholar]
  94. Kravitz DJ, Peng CS, Baker CI 2011. Real-world scene representations in high-level visual cortex: It's the spaces more than the places. J. Neurosci. 31:207322–33
    [Google Scholar]
  95. Land MF, Hayhoe M. 2001. In what ways do eye movements contribute to everyday activities. Vis. Res. 41:25–263559–65
    [Google Scholar]
  96. Lea G. 1975. Chronometric analysis of the method of loci. J. Exp. Psychol. Hum. Percept. Perform. 1:295–104
    [Google Scholar]
  97. Li C-L, Aivar MP, Tong MH, Hayhoe MM 2018. Memory shapes visual search strategies in large-scale environments. Sci. Rep. 8:14324
    [Google Scholar]
  98. Loftus GR, Mackworth NH. 1978. Cognitive determinants of fixation location during picture viewing. J. Exp. Psychol. Hum. Percept. Perform. 4:4565–72
    [Google Scholar]
  99. Mack SC, Eckstein MP. 2011. Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. J. Vis. 11:99
    [Google Scholar]
  100. Mackworth NH, Morandi AJ. 1967. The gaze selects informative details within pictures. Percept. Psychophys. 2:11547–52
    [Google Scholar]
  101. Maguire EA, Nannery R, Spiers HJ 2006. Navigation around London by a taxi driver with bilateral hippocampal lesions. Brain 129:112894–907
    [Google Scholar]
  102. Malcolm GL, Henderson JM. 2010. Combining top-down processes to guide eye movements during real-world scene search. J. Vis. 10:24
    [Google Scholar]
  103. Malcolm GL, Shomstein S. 2015. Object-based attention in real-world scenes. J. Exp. Psychol. Gen. 144:2257–63
    [Google Scholar]
  104. Man L, Krzys K, Castelhano M 2019. The foreground bias: differing impacts across depth on visual search in scenes. PsyArXiv. https://doi.org/10.31234/OSF.IO/W6J4A
    [Crossref] [Google Scholar]
  105. Mandler JM, Johnson NS. 1976. Some of the thousand words a picture is worth. J. Exp. Psychol. Hum. Learn. Mem. 2:5529–40
    [Google Scholar]
  106. Mandler JM, Ritchey GH. 1977. Long-term memory for pictures. J. Exp. Psychol. Hum. Learn. Mem. 3:4386–96
    [Google Scholar]
  107. Marr D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information New York: Freeman
  108. Marr D, Nishihara HK. 1978. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B 200:1140269–94
    [Google Scholar]
  109. Marr D, Poggio BT. 1979. A computational theory of human stereo vision. Proc. R. Soc. Lond. B 204:1156301–28
    [Google Scholar]
  110. Marrara MT, Moore CM. 2000. Role of perceptual organization while attending in depth. Percept. Psychophys. 62:4786–99
    [Google Scholar]
  111. Martinez-Conde S, Macknik SL, Martinez LM, Alonso J-M, Tse PU et al. 2006. Top-down facilitation of visual object recognition: object-based and context-based contributions. Prog. Brain Res. 155:3–21
    [Google Scholar]
  112. McNamara TP. 1986. Mental representations of spatial relations. Cogn. Psychol. 18:187–121
    [Google Scholar]
  113. McNamara TP, Hardy JK, Hirtle SC 1989. Subjective hierarchies in spatial memory. J. Exp. Psychol. Learn. Mem. Cogn. 15:2211–27
    [Google Scholar]
  114. Mullally SL, Maguire EA. 2011. A new role for the parahippocampal cortex in representing space. J. Neurosci. 31:207441–49
    [Google Scholar]
  115. Mullally SL, Maguire EA. 2013. Exploring the role of space-defining objects in constructing and maintaining imagined scenes. Brain Cogn 82:1100–7
    [Google Scholar]
  116. Munneke J, Brentari V, Peelen MV 2013. The influence of scene context on object recognition is independent of attentional focus. Front. Psychol. 4:552
    [Google Scholar]
  117. Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL 2002. Shape perception reduces activity in human primary visual cortex. PNAS 99:2315164–69
    [Google Scholar]
  118. Nagata S. 1993. How to reinforce perception of depth in single two-dimensional pictures. Pictorial Communication in Virtual and Real Environments SR Ellis 527–45 Philadelphia, PA: Taylor & Francis
    [Google Scholar]
  119. Neider MB, Zelinsky GJ. 2006. Scene context guides eye movements during visual search. Vis. Res. 46:5614–21
    [Google Scholar]
  120. Oliva A. 2005. Gist of the scene. Neurobiology of Attention L Itti, G Rees, JK Tsotsos 251–56 Cambridge, MA: Academic
    [Google Scholar]
  121. Oliva A, Park S, Konkle T 2010. Representing, perceiving, and remembering the shape of visual space. Vision in 3D Environments LR Harris, MRM Jenkin 308–40 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  122. Oliva A, Torralba A. 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42:3145–75
    [Google Scholar]
  123. Oliva A, Torralba A. 2007. The role of context in object recognition. Trends Cogn. Sci. 11:12520–27
    [Google Scholar]
  124. Palmer SE. 1975. The effects of contextual scenes on the identification of objects. Mem. Cogn. 3:5519–26
    [Google Scholar]
  125. Park J, Park S. 2018. Coding of navigational distance in the visual scene-selective cortex. J. Vis. 18:10739
    [Google Scholar]
  126. Park S, Intraub H, Yi D-J, Widders D, Chun MM 2007. Beyond the edges of a view: boundary extension in human scene-selective visual cortex. Neuron 54:2335–42
    [Google Scholar]
  127. Park S, Konkle T, Oliva A 2014. Parametric coding of the size and clutter of natural scenes in the human brain. Cereb. Cortex 25:71792–805
    [Google Scholar]
  128. Pereira EJ, Castelhano MS. 2014. Peripheral guidance in scenes: the interaction of scene context and object content. J. Exp. Psychol. Hum. Percept. Perform. 40:52056–72
    [Google Scholar]
  129. Pereira EJ, Castelhano MS. 2019. Attentional capture is contingent on scene region: using surface guidance framework to explore attentional mechanisms during search. Psychon. Bull. Rev. 26:1273–81
    [Google Scholar]
  130. Pezdek K, Whetstone T, Reynolds K, Askari N, Dougherty T 1989. Memory for real-world scenes: the role of consistency with schema expectation. J. Exp. Psychol. Learn. Mem. Cogn. 15:4587–95
    [Google Scholar]
  131. Posner MI. 1980. Orienting of attention. Q. J. Exp. Psychol. 32:13–25
    [Google Scholar]
  132. Previc FH. 1998. The neuropsychology of 3-D space. Psychol. Bull. 124:2123–64
    [Google Scholar]
  133. Roediger HL. 1980. The effectiveness of four mnemonics in ordering recall. J. Exp. Psychol. Hum. Learn. Mem. 6:5558–67
    [Google Scholar]
  134. Rogé J, Pébayle T, Lambilliotte E, Spitzenstetter F, Giselbrecht D, Muzet A 2004. Influence of age, speed and duration of monotonous driving task in traffic on the driver's useful visual field. Vis. Res. 44:232737–44
    [Google Scholar]
  135. Rosenholtz R. 2016. Capabilities and limitations of peripheral vision. Annu. Rev. Vis. Sci. 2:437–57
    [Google Scholar]
  136. Rosenholtz R, Li Y, Nakano L 2007. Measuring visual clutter. J. Vis. 7:217
    [Google Scholar]
  137. Schulman AI. 1973. Recognition memory and the recall of spatial location. Mem. Cogn. 1:3256–60
    [Google Scholar]
  138. Song J, Bennett P, Sekuler A, Sun H-J 2017. Effect of apparent depth in peripheral target detection in driving under focused and divided attention. J. Vis. 17:10388
    [Google Scholar]
  139. Stein T, Peelen MV. 2017. Object detection in natural scenes: independent effects of spatial and category-based attention. Atten. Percept. Psychophys. 79:3738–52
    [Google Scholar]
  140. Summerfield JJ, Lepsien J, Gitelman DR, Mesulam MM, Nobre AC 2006. Orienting attention based on long-term memory experience. Neuron 49:6905–16
    [Google Scholar]
  141. Tarr MJ, Pinker S. 1989. Mental rotation and orientation-dependence in shape recognition. Cogn. Psychol. 21:2233–82
    [Google Scholar]
  142. Tatler BW, Land MF. 2011. Vision and the representation of the surroundings in spatial memory. Phil. Trans. R. Soc. B 366:1564596–610
    [Google Scholar]
  143. Torralba A, Oliva A, Castelhano MS, Henderson JM 2006. Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search. Psychol. Rev. 113:4766–86
    [Google Scholar]
  144. Treisman A, Kahneman D. 1984. Changing views of attention and automaticity. Varieties of Attention R Parasuraman, DR Davies 29–61 Cambridge, MA: Academic
    [Google Scholar]
  145. Ullman S. 1989. Aligning pictorial descriptions: an approach to object recognition. Cognition 32:3193–254
    [Google Scholar]
  146. Vatterott DB, Vecera SP. 2015. The attentional window configures to object and surface boundaries. Vis. Cogn. 23:5561–76
    [Google Scholar]
  147. ML-H, Boettcher SE, Draschkow D 2019. Reading scenes: how scene grammar guides attention and aids perception in real-world environments. Curr. Opin. Psychol. 29:205–10
    [Google Scholar]
  148. ML-H, Henderson JM. 2009. Does gravity matter? Effects of semantic and syntactic inconsistencies on the allocation of attention during scene perception. J. Vis. 9:324
    [Google Scholar]
  149. ML-H, Henderson JM. 2011. Object-scene inconsistencies do not capture gaze: evidence from the flash-preview moving-window paradigm. Atten. Percept. Psychophys. 73:61742–53
    [Google Scholar]
  150. Waller D, Friedman A, Hodgson E, Greenauer N 2009. Learning scenes from multiple views: Novel views can be recognized more efficiently than learned views. Mem. Cogn. 37:190–99
    [Google Scholar]
  151. Wang B, Theeuwes J. 2018. How to inhibit a distractor location? Statistical learning versus active, top-down suppression. Atten. Percept. Psychophys. 80:4860–70
    [Google Scholar]
  152. Williams CC, Castelhano MS. 2019. The changing landscape: high-level influences on eye movement guidance in scenes. Vision 3:333
    [Google Scholar]
  153. Wolbers T, Klatzky RL, Loomis JM, Wutte MG, Giudice NA 2011. Modality-independent coding of spatial layout in the human brain. Curr. Biol. 21:11984–89
    [Google Scholar]
  154. Wolfe JM. 2013. When is it time to move to the next raspberry bush? Foraging rules in human visual search. J. Vis. 13:310
    [Google Scholar]
  155. Wolfe JM, ML, Evans KK, Greene MR 2011. Visual search in scenes involves selective and nonselective pathways. Trends Cogn. Sci. 15:277–84
    [Google Scholar]
  156. Wu C-C, Wick FA, Pomplun M 2014. Guidance of visual attention by semantic information in real-world scenes. Front. Psychol. 5:54
    [Google Scholar]
  157. Zelinsky GJ, Loschky LC. 2005. Eye movements serialize memory for objects in scenes. Percept. Psychophys. 67:4676–90
    [Google Scholar]
/content/journals/10.1146/annurev-vision-121219-081745
Loading
/content/journals/10.1146/annurev-vision-121219-081745
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error