1932

Abstract

Early blindness causes fundamental alterations of neural function across more than 25% of cortex—changes that span the gamut from metabolism to behavior and collectively represent one of the most dramatic examples of plasticity in the human brain. The goal of this review is to describe how the remarkable behavioral and neuroanatomical compensations demonstrated by blind individuals provide insights into the extent, mechanisms, and limits of human brain plasticity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102016-061241
2018-09-15
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/vision/4/1/annurev-vision-102016-061241.html?itemId=/content/journals/10.1146/annurev-vision-102016-061241&mimeType=html&fmt=ahah

Literature Cited

  1. Abbott LF, Dayan P 1999. The effect of correlated variability on the accuracy of a population code. Neural Comput 11:91–101
    [Google Scholar]
  2. Ackman JB, Crair MC 2014. Role of emergent neural activity in visual map development. Curr. Opin. Neurobiol. 24:166–75
    [Google Scholar]
  3. Ahissar M, Hochstein S 2004. The reverse hierarchy theory of visual perceptual learning. Trends Cogn. Sci. 8:457–64
    [Google Scholar]
  4. Alink A, Euler F, Kriegeskorte N, Singer W, Kohler A 2012. Auditory motion direction encoding in auditory cortex and high-level visual cortex. Hum. Brain Mapp. 33:969–78
    [Google Scholar]
  5. Amedi A, Malach R, Hendler T, Peled S, Zohary E 2001. Visuo-haptic object-related activation in the ventral visual pathway. Nat. Neurosci. 4:324–30
    [Google Scholar]
  6. Amedi A, Raz N, Pianka P, Malach R, Zohary E 2003. Early ‘visual’ cortex activation correlates with superior verbal memory performance in the blind. Nat. Neurosci. 6:758–66
    [Google Scholar]
  7. Amedi A, Stern WM, Camprodon JA, Bermpohl F, Merabet L et al. 2007. Shape conveyed by visual-to-auditory sensory substitution activates the lateral occipital complex. Nat. Neurosci. 10:687–89
    [Google Scholar]
  8. Anurova I, Renier LA, De Volder AG, Carlson S, Rauschecker JP 2015. Relationship between cortical thickness and functional activation in the early blind. Cereb. Cortex 25:2035–48
    [Google Scholar]
  9. Banton T, Dobkins K, Bertenthal BI 2001. Infant direction discrimination thresholds. Vis. Res. 41:1049–56
    [Google Scholar]
  10. Bavelier D, Levi DM, Li RW, Dan Y, Hensch TK 2010. Removing brakes on adult brain plasticity: from molecular to behavioral interventions. J. Neurosci. 30:14964–71
    [Google Scholar]
  11. Beauchamp MS, Yasar NE, Kishan N, Ro T 2007. Human MST but not MT responds to tactile stimulation. J. Neurosci. 27:8261–67
    [Google Scholar]
  12. Bedny M 2017. Evidence from blindness for a cognitively pluripotent cortex. Trends Cogn. Sci. 21:637–48
    [Google Scholar]
  13. Bedny M, Konkle T, Pelphrey K, Saxe R, Pascual-Leone A 2010. Sensitive period for a multimodal response in human visual motion area MT/MST. Curr. Biol. 20:1900–6
    [Google Scholar]
  14. Bedny M, Pascual-Leone A, Dodell-Feder D, Fedorenko E, Saxe R 2011. Language processing in the occipital cortex of congenitally blind adults. PNAS 108:4429–34
    [Google Scholar]
  15. Benevento LA, Bakkum BW, Port JD, Cohen RS 1992. The effects of dark-rearing on the electrophysiology of the rat visual cortex. Brain Res 572:198–207
    [Google Scholar]
  16. Bengoetxea H, Argandoña EG, Lafuente JV 2008. Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex. Cereb. Cortex 18:1630–39
    [Google Scholar]
  17. Bengoetxea H, Ortuzar N, Bulnes S, Rico-Barrio I, Lafuente JV, Argandoña EG 2012. Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural. Plast. 12:305693
    [Google Scholar]
  18. Bengoetxea H, Ortuzar N, Rico-Barrio I, Lafuente JV, Argandoña EG 2013. Increased physical activity is not enough to recover astrocytic population from dark-rearing. Synergy with multisensory enrichment is required. Front. Cell. Neurosci. 7:170
    [Google Scholar]
  19. Bennett CM, Baird AA, Miller MB, Wolford GL 2011. Neural correlates of interspecies perspective taking in the post-mortem Atlantic salmon: an argument for proper multiple comparisons correction. J. Serendipitous Unexpected Results 1:1–5
    [Google Scholar]
  20. Ben-Shachar M, Dougherty RF, Deutsch GK, Wandell BA 2007. Differential sensitivity to words and shapes in ventral occipito-temporal cortex. Cereb. Cortex 17:1604–11
    [Google Scholar]
  21. Blake R, Sobel KV, James TW 2004. Neural synergy between kinetic vision and touch. Psychol. Sci. 15:397–402
    [Google Scholar]
  22. Bock AS, Binda P, Benson NC, Bridge H, Watkins KE, Fine I 2015. Resting-state retinotopic organization in the absence of retinal input and visual experience. J. Neurosci. 35:12366–82
    [Google Scholar]
  23. Bock AS, Fine I 2014. Anatomical and functional plasticity in early blind individuals and the mixture of experts architecture. Front. Hum. Neurosci. 8:971
    [Google Scholar]
  24. Bock AS, Olavarria JF 2011. Neonatal enucleation during a critical period reduces the precision of cortico-cortical projections in visual cortex. Neurosci. Lett. 501:152–56
    [Google Scholar]
  25. Bock AS, Saenz M, Tungaraza R, Boynton GM, Bridge H, Fine I 2013. Visual callosal topography in the absence of retinal input. NeuroImage 81:325–34
    [Google Scholar]
  26. Bridge H, Cowey A, Ragge N, Watkins K 2009. Imaging studies in congenital anophthalmia reveal preservation of brain architecture in ‘visual’ cortex. Brain 132:3467–80
    [Google Scholar]
  27. Burton H, Diamond JB, McDermott KB 2003. Dissociating cortical regions activated by semantic and phonological tasks: a fMRI study in blind and sighted people. J. Neurophysiol. 90:1965–82
    [Google Scholar]
  28. Burton H, Snyder AZ, Conturo TE, Akbudak E, Ollinger JM, Raichle ME 2002. Adaptive changes in early and late blind: a fMRI study of braille reading. J. Neurophysiol. 87:589–607
    [Google Scholar]
  29. Callaway EM 2004. Feedforward, feedback and inhibitory connections in primate visual cortex. Neural Netw 17:625–32
    [Google Scholar]
  30. Callaway EM, Borrell V 2011. Developmental sculpting of dendritic morphology of layer 4 neurons in visual cortex: influence of retinal input. J. Neurosci. 31:7456–70
    [Google Scholar]
  31. Cang J, Rentería RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP 2005. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–809
    [Google Scholar]
  32. Cauli B, Tong XK, Rancillac A, Serluca N, Lambolez B et al. 2004. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24:8940–49
    [Google Scholar]
  33. Ciaramitaro VM, Buracas GT, Boynton GM 2007. Spatial and cross-modal attention alter responses to unattended sensory information in early visual and auditory human cortex. J. Neurophysiol. 98:2399–413
    [Google Scholar]
  34. Cohen L, Dehaene S, Naccache L, Lehericy S, Dehaene-Lambertz G et al. 2000. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:291–307
    [Google Scholar]
  35. Collignon O, Vandewalle G, Voss P, Albouy G, Charbonneau G et al. 2011. Functional specialization for auditory-spatial processing in the occipital cortex of congenitally blind humans. PNAS 108:4435–40
    [Google Scholar]
  36. Coullon GS, Emir UE, Fine I, Watkins KE, Bridge H 2015. Neurochemical changes in the pericalcarine cortex in congenital blindness attributable to bilateral anophthalmia. J. Neurophysiol. 114:1725–33
    [Google Scholar]
  37. De Volder AG, Bol A, Blin J, Robert A, Arno P et al. 1997. Brain energy metabolism in early blind subjects: neural activity in the visual cortex. Brain Res 750:235–44
    [Google Scholar]
  38. Dehaene S, Cohen L 2007. Cultural recycling of cortical maps. Neuron 56:384–98
    [Google Scholar]
  39. Dehay C, Giroud P, Berland M, Killackey H, Kennedy H 1996.a Contribution of thalamic input to the specification of cytoarchitectonic cortical fields in the primate: effects of bilateral enucleation in the fetal monkey on the boundaries, dimensions, and gyrification of striate and extrastriate cortex. J. Comp. Neurol. 367:70–89
    [Google Scholar]
  40. Dehay C, Giroud P, Berland M, Killackey HP, Kennedy H 1996.b Phenotypic characterisation of respecified visual cortex subsequent to prenatal enucleation in the monkey: development of acetylcholinesterase and cytochrome oxidase patterns. J. Comp. Neurol. 376:386–402
    [Google Scholar]
  41. Disney AA, Aoki C 2008. Muscarinic acetylcholine receptors in macaque V1 are most frequently expressed by parvalbumin-immunoreactive neurons. J. Comp. Neurol. 507:1748–62
    [Google Scholar]
  42. Disney AA, Domakonda KV, Aoki C 2006. Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J. Comp. Neurol. 499:49–63
    [Google Scholar]
  43. Donahue MJ, Near J, Blicher JU, Jezzard P 2010. Baseline GABA concentration and fMRI response. NeuroImage 53:392–98
    [Google Scholar]
  44. Dormal G, Lepore F, Harissi-Dagher M, Albouy G, Bertone A et al. 2015. Tracking the evolution of crossmodal plasticity and visual functions before and after sight restoration. J. Neurophysiol. 113:1727–42
    [Google Scholar]
  45. Dormal G, Rezk M, Yakobov E, Lepore F, Collignon O 2016. Auditory motion in the sighted and blind: Early visual deprivation triggers a large-scale imbalance between auditory and “visual” brain regions. NeuroImage 134:630–44
    [Google Scholar]
  46. Dubois J, Dehaene-Lambertz G, Kulikova S, Poupon C, Hüppi PS, Hertz-Pannier L 2014. The early development of brain white matter: a review of imaging studies in fetuses, newborns and infants. Neuroscience 276:48–71
    [Google Scholar]
  47. Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr., Le Goualher G et al. 2000. A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb. Cortex 10:454–63
    [Google Scholar]
  48. Eklund A, Nichols TE, Knutsson H 2016. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS 113:7900–5
    [Google Scholar]
  49. Elbert T, Sterr A, Rockstroh B, Pantev C, Müller MM, Taub E 2002. Expansion of the tonotopic area in the auditory cortex of the blind. J. Neurosci. 22:9941–44
    [Google Scholar]
  50. Fine I 2014. Sensory systems: Do you hear what I see. ? Nature 508:461–62
    [Google Scholar]
  51. Gougoux F, Belin P, Voss P, Lepore F, Lassonde M, Zatorre RJ 2009. Voice perception in blind persons: a functional magnetic resonance imaging study. Neuropsychologia 47:2967–74
    [Google Scholar]
  52. Grubb MS, Rossi FM, Changeux JP, Thompson ID 2003. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40:1161–72
    [Google Scholar]
  53. Hamel E 2006. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100:1059–64
    [Google Scholar]
  54. Hensch TK, Bilimoria PM 2012. Re-opening windows: manipulating critical periods for brain development. Cerebrum 2012:11
    [Google Scholar]
  55. Herminghaus S, Frolich L, Gorriz C, Pilatus U, Dierks T et al. 2003. Brain metabolism in Alzheimer disease and vascular dementia assessed by in vivo proton magnetic resonance spectroscopy. Psychiatry Res 123:183–90
    [Google Scholar]
  56. Hertrich I, Dietrich S, Ackermann H 2013. Tracking the speech signal–time-locked MEG signals during perception of ultra-fast and moderately fast speech in blind and in sighted listeners. Brain Lang 124:9–21
    [Google Scholar]
  57. Hölig C, Föcker J, Best A, Röder B, Büchel C 2014. Brain systems mediating voice identity processing in blind humans. Hum. Brain Mapp. 35:4607–19
    [Google Scholar]
  58. Hsieh PJ, Vul E, Kanwisher N 2010. Recognition alters the spatial pattern of fMRI activation in early retinotopic cortex. J. Neurophysiol. 103:1501–7
    [Google Scholar]
  59. Ishikawa AW, Komatsu Y, Yoshimura Y 2014. Experience-dependent emergence of fine-scale networks in visual cortex. J. Neurosci. 34:12576–86
    [Google Scholar]
  60. Jacobs RA 1997. Nature, nurture, and the development of functional specializations: a computational approach. Psychon. Bull. Rev. 4:299–309
    [Google Scholar]
  61. Jacobs RA, Kosslyn SM 1994. Encoding shape and spatial relations-the role of receptive field size in coordination complementary representations. Cogn. Sci. 18:361–68
    [Google Scholar]
  62. Jafari Z, Malayeri S 2014. Effects of congenital blindness on the subcortical representation of speech cues. Neuroscience 258:401–9
    [Google Scholar]
  63. Jiang F, Beauchamp MS, Fine I 2015. Re-examining overlap between tactile and visual motion responses within hMT+ and STS. NeuroImage 119:187–96
    [Google Scholar]
  64. Jiang F, Stecker GC, Boynton GM, Fine I 2016. Early blindness results in developmental plasticity for auditory motion processing within auditory and occipital cortex. Front. Hum. Neurosci. 10:324
    [Google Scholar]
  65. Jiang F, Stecker GC, Fine I 2014. Auditory motion processing after early blindness. J. Vis. 14:4
    [Google Scholar]
  66. Jiang J, Zhu W, Shi F, Liu Y, Li J et al. 2009. Thick visual cortex in the early blind. J. Neurosci. 29:2205–11
    [Google Scholar]
  67. Jonas E, Kording KP 2017. Could a neuroscientist understand a microprocessor. ? PLOS Comput. Biol. 13:e1005268
    [Google Scholar]
  68. Joo SJ, Boynton GM, Murray SO 2012. Long-range, pattern-dependent contextual effects in early human visual cortex. Curr. Biol. 22:781–86
    [Google Scholar]
  69. Kanjlia S, Lane C, Feigenson L, Bedny M 2016. Absence of visual experience modifies the neural basis of numerical thinking. PNAS 113:111
    [Google Scholar]
  70. Kanwisher N, McDermott J, Chun MM 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:4302–11
    [Google Scholar]
  71. Karlen SJ, Krubitzer L 2009. Effects of bilateral enucleation on the size of visual and nonvisual areas of the brain. Cereb. Cortex 19:1360–71
    [Google Scholar]
  72. Kleinfeld D, Blinder P, Drew PJ, Driscoll JD, Muller A et al. 2011. A guide to delineate the logic of neurovascular signaling in the brain. Front. Neuroenerget. 3:1
    [Google Scholar]
  73. Ko H, Mrsic-Flogel TD, Hofer SB 2014. Emergence of feature-specific connectivity in cortical microcircuits in the absence of visual experience. J. Neurosci. 34:9812–16
    [Google Scholar]
  74. Kourtzi Z, Kanwisher N 2000. Activation in human MT/MST by static images with implied motion. J. Cogn. Neurosci. 12:48–55
    [Google Scholar]
  75. Lane C, Kanjlia S, Omaki A, Bedny M 2015. “Visual” cortex of congenitally blind adults responds to syntactic movement. J. Neurosci. 35:12859–68
    [Google Scholar]
  76. Lecrux C, Hamel E 2011. The neurovascular unit in brain function and disease. Acta Physiol 203:47–59
    [Google Scholar]
  77. Levin N, Dumoulin SO, Winawer J, Dougherty RF, Wandell BA 2010. Cortical maps and white matter tracts following long period of visual deprivation and retinal image restoration. Neuron 65:21–31
    [Google Scholar]
  78. Lewis JW, Beauchamp MS, DeYoe EA 2000. A comparison of visual and auditory motion processing in human cerebral cortex. Cereb. Cortex 10:873–88
    [Google Scholar]
  79. Lewis L, Saenz M, Fine I 2007. Patterns of cross-modal plasticity in the visual cortex of early blind human subjects across a variety of tasks and input modalities. J. Vis. 7:9875
    [Google Scholar]
  80. Lewis LB, Saenz M, Fine I 2010. Mechanisms of cross-modal plasticity in early-blind subjects. J. Neurophysiol. 104:2995–3008
    [Google Scholar]
  81. Matteau I, Kupers R, Ricciardi E, Pietrini P, Ptito M 2010. Beyond visual, aural and haptic movement perception: hMT+ is activated by electrotactile motion stimulation of the tongue in sighted and in congenitally blind individuals. Brain Res. Bull. 82:264–70
    [Google Scholar]
  82. McConnell SK, Kaznowski CE 1991. Cell cycle dependence of laminar determination in developing neocortex. Science 254:282–85
    [Google Scholar]
  83. McLaughlin T, Torborg CL, Feller MB, O'Leary DD 2003. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–60
    [Google Scholar]
  84. Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET et al. 2008. Rapid and reversible recruitment of early visual cortex for touch. PLOS ONE 3:e3046
    [Google Scholar]
  85. Movshon JA, Van Sluyters RC 1981. Visual neural development. Annu. Rev. Psychol. 32:477–522
    [Google Scholar]
  86. Muckli L, De Martino F, Vizioli L, Petro LS, Smith FW et al. 2015. Contextual feedback to superficial layers of V1. Curr. Biol. 25:2690–95
    [Google Scholar]
  87. Muthukumaraswamy SD, Evans CJ, Edden RA, Wise RG, Singh KD 2012. Individual variability in the shape and amplitude of the BOLD-HRF correlates with endogenous GABAergic inhibition. Hum. Brain Mapp. 33:455–65
    [Google Scholar]
  88. Nicolakakis N, Hamel E 2011. Neurovascular function in Alzheimer's disease patients and experimental models. J. Cereb. Blood Flow Metab. 31:1354–70
    [Google Scholar]
  89. Noppeney U, Friston KJ, Ashburner J, Frackowiak R, Price CJ 2005. Early visual deprivation induces structural plasticity in gray and white matter. Curr. Biol. 15:R488–90
    [Google Scholar]
  90. Osher DE, Saxe RR, Koldewyn K, Gabrieli JD, Kanwisher N, Saygin ZM 2016. Structural connectivity fingerprints predict cortical selectivity for multiple visual categories across cortex. Cereb. Cortex 26:1668–83
    [Google Scholar]
  91. Pascual-Leone A, Hamilton R 2001. The metamodal organization of the brain. Prog. Brain Res. 134:427–45
    [Google Scholar]
  92. Poirier C, Collignon O, Devolder AG, Renier L, Vanlierde A et al. 2005. Specific activation of the V5 brain area by auditory motion processing: an fMRI study. Brain Res. Cogn. Brain Res. 25:650–58
    [Google Scholar]
  93. Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A et al. 2006. Auditory motion perception activates visual motion areas in early blind subjects. NeuroImage 31:279–85
    [Google Scholar]
  94. Ptito M, Schneider FCG, Paulson OB, Kupers R 2008. Alterations of the visual pathways in congenital blindness. Exp. Brain Res. 187:41–49
    [Google Scholar]
  95. Rakic P, Suner I, Williams RW 1991. A novel cytoarchitectonic area induced experimentally within the primate visual cortex. PNAS 88:2083–87
    [Google Scholar]
  96. Rao RPN, Ballard DH 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87
    [Google Scholar]
  97. Raviola E, Wiesel TN 1978. Effect of dark-rearing on experimental myopia in monkeys. Investig. Ophthalmol. Vis. Sci. 17:485–88
    [Google Scholar]
  98. Reich L, Szwed M, Cohen L, Amedi A 2011. A ventral visual stream reading center independent of visual experience. Curr. Biol. 21:363–68
    [Google Scholar]
  99. Reillo I, de Juan Romero C, Garcia-Cabezas MA, Borrell V 2011. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. Cereb. Cortex 21:1674–94
    [Google Scholar]
  100. Renier LA, Anurova I, De Volder AG, Carlson S, VanMeter J, Rauschecker JP 2010. Preserved functional specialization for spatial processing in the middle occipital gyrus of the early blind. Neuron 68:138–48
    [Google Scholar]
  101. Ricciardi E, Basso D, Sani L, Bonino D, Vecchi T et al. 2011. Functional inhibition of the human middle temporal cortex affects non-visual motion perception: a repetitive transcranial magnetic stimulation study during tactile speed discrimination. Exp. Biol. Med. 236:138–44
    [Google Scholar]
  102. Ricciardi E, Bonino D, Pellegrini S, Pietrini P 2014. Mind the blind brain to understand the sighted one! Is there a supramodal cortical functional architecture. ? Neurosci. Biobehav. Rev. 41:64–77
    [Google Scholar]
  103. Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP et al. 2007. The effect of visual experience on the development of functional architecture in hMT+. Cereb. Cortex 17:2933–39
    [Google Scholar]
  104. Rizzi M, Russell L, Powell K 2014. Do visual circuits mature without visual stimuli. ? J. Neurosci. 34:15833–35
    [Google Scholar]
  105. Sadato N, Okada T, Honda M, Yonekura Y 2002. Critical period for cross-modal plasticity in blind humans: a functional MRI study. NeuroImage 16:389–400
    [Google Scholar]
  106. Sadato N, Pascual-Leone A, Grafman J, Deiber MP, Ibanez V, Hallett M 1998. Neural networks for braille reading by the blind. Brain 121:Part 71213–29
    [Google Scholar]
  107. Sadato N, Pascual-Leone A, Grafman J, Ibanez V, Deiber MP et al. 1996. Activation of the primary visual cortex by braille reading in blind subjects. Nature 380:526–28
    [Google Scholar]
  108. Saenz M, Lewis LB, Huth AG, Fine I, Koch C 2008. Visual motion area MT+/V5 responds to auditory motion in human sight-recovery subjects. J. Neurosci. 28:5141–48
    [Google Scholar]
  109. Sani L, Ricciardi E, Gentili C, Vanello N, Haxby JV, Pietrini P 2010. Effects of visual experience on the human MT+ functional connectivity networks: an fMRI study of motion perception in sighted and congenitally blind individuals. Front. Syst. Neurosci. 4:159
    [Google Scholar]
  110. Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD et al. 2016. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19:1250–55
    [Google Scholar]
  111. Senior C, Barnes J, Giampietro V, Simmons A, Bullmore ET et al. 2000. The functional neuroanatomy of implicit-motion perception or representational momentum. Curr. Biol. 10:16–22
    [Google Scholar]
  112. Serences JT 2016. Neural mechanisms of information storage in visual short-term memory. Vis. Res. 128:53–67
    [Google Scholar]
  113. Sherman SM, Spear PD 1982. Organization of visual pathways in normal and visually deprived cats. Physiol. Rev. 62:738–855
    [Google Scholar]
  114. Shimony JS, Burton H, Epstein AA, McLaren DG, Sun SW, Snyder AZ 2006. Diffusion tensor imaging reveals white matter reorganization in early blind humans. Cereb. Cortex 16:1653–61
    [Google Scholar]
  115. Shu N, Li J, Li K, Yu C, Jiang T 2009. Abnormal diffusion of cerebral white matter in early blindness. Hum. Brain Mapp. 30:220–27
    [Google Scholar]
  116. Smith FW, Muckli L 2010. Nonstimulated early visual areas carry information about surrounding context. PNAS 107:20099–103
    [Google Scholar]
  117. Stellwagen D, Shatz CJ 2002. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357–67
    [Google Scholar]
  118. Striem-Amit E, Amedi A 2014. Visual cortex extrastriate body-selective area activation in congenitally blind people “seeing” by using sounds. Curr. Biol. 24:687–92
    [Google Scholar]
  119. Striem-Amit E, Cohen L, Dehaene S, Amedi A 2012.a Reading with sounds: sensory substitution selectively activates the visual word form area in the blind. Neuron 76:640–52
    [Google Scholar]
  120. Striem-Amit E, Dakwar O, Reich L, Amedi A 2012.b The large-scale organization of “visual” streams emerges without visual experience. Cereb. Cortex 22:1698–709
    [Google Scholar]
  121. Striem-Amit E, Ovadia-Caro S, Caramazza A, Margulies DS, Villringer A, Amedi A 2015. Functional connectivity of visual cortex in the blind follows retinotopic organization principles. Brain 138:1679–95
    [Google Scholar]
  122. Summers IR, Francis ST, Bowtell RW, McGlone FP, Clemence M 2009. A functional-magnetic-resonance-imaging investigation of cortical activation from moving vibrotactile stimuli on the fingertip. J. Acoust. Soc. Am. 125:1033–39
    [Google Scholar]
  123. Talairach J, Tournoux P 1988. Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging New York: Thieme
  124. Thirion B, Duchesnay E, Hubbard E, Dubois J, Poline JB et al. 2006. Inverse retinotopy: inferring the visual content of images from brain activation patterns. NeuroImage 33:1104–16
    [Google Scholar]
  125. van den Hurk J, Van Baelen M, Op de Beeck HP 2017. Development of visual category selectivity in ventral visual cortex does not require visual experience. PNAS 114:E4501–10
    [Google Scholar]
  126. Van Essen DC 2005. Corticocortical and thalamocortical information flow in the primate visual system. Prog. Brain Res. 149:173–85
    [Google Scholar]
  127. Veraart C, De Volder AG, Wanet-Defalque MC, Bol A, Michel C, Goffinet AM 1990. Glucose utilization in human visual cortex is abnormally elevated in blindness of early onset but decreased in blindness of late onset. Brain Res 510:115–21
    [Google Scholar]
  128. Wanet-Defalque MC, Veraart C, De Volder A, Metz R, Michel C et al. 1988. High metabolic activity in the visual cortex of early blind human subjects. Brain Res 446:369–73
    [Google Scholar]
  129. Watkins KE, Cowey A, Alexander I, Filippini N, Kennedy JM et al. 2012. Language networks in anophthalmia: maintained hierarchy of processing in ‘visual’ cortex. Brain 135:1566–77
    [Google Scholar]
  130. Weaver KE, Richards TL, Saenz M, Petropoulos H, Fine I 2013. Neurochemical changes within human early blind occipital cortex. Neuroscience 252:222–33
    [Google Scholar]
  131. Weiner KS, Golarai G, Caspers J, Chuapoco MR, Mohlberg H et al. 2014. The mid-fusiform sulcus: a landmark identifying both cytoarchitectonic and functional divisions of human temporal cortex. NeuroImage 84:453–65
    [Google Scholar]
  132. Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z et al. 2015. Single-cell initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349:70–74
    [Google Scholar]
  133. Wiesel TN, Hubel DH 1963. Effects of visual deprivation on morphology and physiology of cells in the cats lateral geniculate body. J. Neurophysiol. 26:978–93
    [Google Scholar]
  134. Wiesel TN, Hubel DH 1965. Extent of recovery from the effects of visual deprivation in kittens. J. Neurophysiol. 28:1060–72
    [Google Scholar]
  135. Williams MA, Baker CI, Op de Beeck HP, Shim WM, Dang S et al. 2008. Feedback of visual object information to foveal retinotopic cortex. Nat. Neurosci. 11:1439–45
    [Google Scholar]
  136. Wolbers T, Zahorik P, Giudice NA 2011. Decoding the direction of auditory motion in blind humans. NeuroImage 56:681–87
    [Google Scholar]
  137. Workman AD, Charvet CJ, Clancy B, Darlington RB, Finlay BL 2013. Modeling transformations of neurodevelopmental sequences across mammalian species. J. Neurosci. 33:7368–83
    [Google Scholar]
/content/journals/10.1146/annurev-vision-102016-061241
Loading
/content/journals/10.1146/annurev-vision-102016-061241
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error