1932

Abstract

Plants associate with a wide diversity of microorganisms. Some microorganisms engage in intimate associations with the plant host, collectively forming a metaorganism. Such close coexistence with plants requires specific adaptations that allow microorganisms to overcome plant defenses and inhabit plant tissues during growth and reproduction. New data suggest that the plant immune system has a broader role beyond pathogen recognition and also plays an important role in the community assembly of the associated microorganism. We propose that core microorganisms undergo coadaptation with their plant host, notably in response to the plant immune system allowing them to persist and propagate in their host. Microorganisms, which are vertically transmitted from generation to generation via plant seeds, putatively compose highly adapted species and may have plant-beneficial functions. The extent to which plant domestication has impacted the underlying genetics of plant–microbe associations remains poorly understood. We propose that the ability of domesticated plants to select and maintain advantageous microbial partners may have been affected. In this review, we discuss factors that impact plant metaorganism assembly and function. We underline the importance of microbe–microbe interactions in plant tissues, as they are still poorly studied but may have a great impact on plant health.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-phyto-082718-100008
2019-08-25
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/phyto/57/1/annurev-phyto-082718-100008.html?itemId=/content/journals/10.1146/annurev-phyto-082718-100008&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Adams DG. 2002. Cyanobacteria in symbiosis with hornworts and liverworts. Cyanobacteria in Symbiosis AN Rai, B Bergmann, U Rasmussen 117–35 Dordrecht, Neth: Springer
    [Google Scholar]
  2. 2. 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T et al. 2016. Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLOS Biol 14:1e1002352
    [Google Scholar]
  3. 3. 
    Akkermans ADL, Abdulkadar S, Trinick MJ 1978. Nitrogen-fixing root nodules in Ulmaceae. Nature 274:190
    [Google Scholar]
  4. 4. 
    Albert M, Jehle AK, Mueller K, Eisele C, Lipschis M, Felix G 2010. Arabidopsis thaliana pattern recognition receptors for bacterial elongation factor Tu and flagellin can be combined to form functional chimeric receptors. J. Biol. Chem. 285:2519035–42
    [Google Scholar]
  5. 5. 
    Almario J, Jeena G, Wunder J, Langen G, Zuccaro A et al. 2017. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. PNAS 114:44E9403–12
    [Google Scholar]
  6. 6. 
    Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E et al. 2015. Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:7582364–69
    [Google Scholar]
  7. 7. 
    Bakshi M, Vahabi K, Bhattacharya S, Sherameti I, Varma A et al. 2015. WRKY6 restricts Piriformospora indica–stimulated and phosphate-induced root development in Arabidopsis. BMC Plant Biol 15:1305
    [Google Scholar]
  8. 8. 
    Bartoli C, Frachon L, Barret M, Rigal M, Huard-Chauveau C et al. 2018. In situ relationships between microbiota and potential pathobiota in Arabidopsis thaliana. ISME J 12:2024–38
    [Google Scholar]
  9. 9. 
    Beck M, Wyrsch I, Strutt J, Wimalasekera R, Webb A et al. 2014. Expression patterns of flagellin sensing 2 map to bacterial entry sites in plant shoots and roots. J. Exp. Bot. 65:226487–98
    [Google Scholar]
  10. 10. 
    Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S 2012. Spatio-temporal cellular dynamics of the Arabidopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24:104205–19
    [Google Scholar]
  11. 11. 
    Berg G, Smalla K. 2009. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68:11–13
    [Google Scholar]
  12. 12. 
    Bergelson J, Kreitman M, Stahl EA, Tian D 2001. Evolutionary dynamics of plant R-genes. Science 292:55252281–85
    [Google Scholar]
  13. 13. 
    Bodenhausen N, Bortfeld-Miller M, Ackermann M, Vorholt JA 2014. A synthetic community approach reveals plant genotypes affecting the phyllosphere microbiota. PLOS Genet 10:4e1004283
    [Google Scholar]
  14. 14. 
    Boller T, Felix G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379–406
    [Google Scholar]
  15. 15. 
    Bonito G, Reynolds H, Robeson MS, Nelson J, Hodkinson BP et al. 2014. Plant host and soil origin influence fungal and bacterial assemblages in the roots of woody plants. Mol. Ecol. 23:133356–70
    [Google Scholar]
  16. 16. 
    Bosch TCG, McFall-Ngai MJ. 2011. Metaorganisms as the new frontier. Zoology 114:4185–90
    [Google Scholar]
  17. 17. 
    Bulgarelli D, Garrido-Oter R, Münch PC, Weiman A, Dröge J et al. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:3392–403
    [Google Scholar]
  18. 18. 
    Bulgarelli D, Rott M, Schlaeppi K, van Themaat EVL, Ahmadinejad N et al. 2012. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488:740991–95
    [Google Scholar]
  19. 19. 
    Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P 2013. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 64:807–38
    [Google Scholar]
  20. 20. 
    Burke C, Steinberg P, Rusch D, Kjelleberg S, Thomas T 2011. Bacterial community assembly based on functional genes rather than species. PNAS 108:3414288–93
    [Google Scholar]
  21. 21. 
    Cao Y, Halane MK, Gassmann W, Stacey G 2017. The role of plant innate immunity in the legume-Rhizobium symbiosis. Annu. Rev. Plant Biol. 68:535–61
    [Google Scholar]
  22. 22. 
    Castrillo G, Teixeira PJPL, Paredes SH, Law TF, De Lorenzo L et al. 2017. Root microbiota drive direct integration of phosphate stress and immunity. Nature 543:7646513–18
    [Google Scholar]
  23. 23. 
    Chaparro JM, Badri D V, Vivanco JM 2014. Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:4790–803
    [Google Scholar]
  24. 24. 
    Choi J, Summers W, Paszkowski U 2018. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses. Annu. Rev. Phytopathol. 56:135–60
    [Google Scholar]
  25. 25. 
    Clarke CR, Chinchilla D, Hind SR, Taguchi F, Miki R et al. 2013. Allelic variation in two distinct Pseudomonas syringae flagellin epitopes modulates the strength of plant immune responses but not bacterial motility. New Phytol 200:3847–60
    [Google Scholar]
  26. 26. 
    Coleman-Derr D, Desgarennes D, Fonseca-Garcia C, Gross S, Clingenpeel S et al. 2016. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species. New Phytol 209:2798–811
    [Google Scholar]
  27. 27. 
    Copeland JK, Yuan L, Layeghifard M, Wang PW, Guttman DS 2015. Seasonal community succession of the phyllosphere microbiome. Mol. Plant-Microbe Interact. 28:3274–85
    [Google Scholar]
  28. 28. 
    Cui J-L, Vijayakumar V, Zhang G 2018. Partitioning of fungal endophyte assemblages in root-parasitic plant Cynomorium songaricum and its host Nitraria tangutorum.. Front. Microbiol 9:666
    [Google Scholar]
  29. 29. 
    Deakin WJ, Broughton WJ. 2009. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat. Rev. Microbiol. 7:312–20
    [Google Scholar]
  30. 30. 
    DeYoung BJ, Innes RW. 2006. Plant NBS-LRR proteins in pathogen sensing and host defense. Nat. Immunol. 7:1243–49
    [Google Scholar]
  31. 31. 
    Dickie IA, Fukami T, Wilkie JP, Allen RB, Buchanan PK 2012. Do assembly history effects attenuate from species to ecosystem properties? A field test with wood-inhabiting fungi. Ecol. Lett. 15:2133–41
    [Google Scholar]
  32. 32. 
    Döbereiner J, Reis VM, Paula MA, de Olivares F 1993. Endophytic diazotrophs in sugar cane, cereals and tuber plants. New Horizons in Nitrogen Fixation R Palacios, J Mora, WE Newton 671–76 Dordrecht, Neth: Springer
    [Google Scholar]
  33. 33. 
    Doebley JF, Gaut BS, Smith BD 2006. The molecular genetics of crop domestication. Cell 127:71309–21
    [Google Scholar]
  34. 34. 
    Dombrowski N, Schlaeppi K, Agler MT, Hacquard S, Kemen E et al. 2017. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time. ISME J 11:143–55
    [Google Scholar]
  35. 35. 
    Dong S, Stam R, Cano LM, Song J, Sklenar J et al. 2014. Effector specialization in a lineage of the Irish potato famine pathogen. Science 343:6170552–55
    [Google Scholar]
  36. 36. 
    Dornelas M, Connolly SR, Hughes TP 2006. Coral reef diversity refutes the neutral theory of biodiversity. Nature 440:80–82
    [Google Scholar]
  37. 37. 
    Dubiella U, Seybold H, Durian G, Komander E, Lassig R et al. 2013. Calcium-dependent protein kinase/NADPH oxidase activation circuit is required for rapid defense signal propagation. PNAS 110:218744–49
    [Google Scholar]
  38. 38. 
    Durán P, Thiergart T, Garrido-Oter R, Agler M, Kemen E et al. 2018. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell 175:4973–83
    [Google Scholar]
  39. 39. 
    Edwards J, Johnson C, Santos-Medellín C, Lurie E, Podishetty NK et al. 2015. Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:8E911–20
    [Google Scholar]
  40. 40. 
    Felix G, Duran JD, Volko S, Boller T 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:3265–76
    [Google Scholar]
  41. 41. 
    Fierer N. 2017. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15:10579–90
    [Google Scholar]
  42. 42. 
    Friesen ML, Porter SS, Stark SC, von Wettberg EJ, Sachs JL, Martinez-Romero E 2011. Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst. 42:23–46
    [Google Scholar]
  43. 43. 
    Fukami T, Dickie IA, Paula Wilkie J, Paulus BC, Park D et al. 2010. Assembly history dictates ecosystem functioning: evidence from wood decomposer communities. Ecol. Lett. 13:6675–84
    [Google Scholar]
  44. 44. 
    Gao M, Teplitski M, Robinson JB, Bauer WD 2003. Production of substances by Medicago truncatula that affect bacterial quorum sensing. Mol. Plant-Microbe Interact. 16:9827–34
    [Google Scholar]
  45. 45. 
    Garrido-Oter R, Nakano RT, Dombrowski N, Ma K-W, Team TA et al. 2018. Modular traits of the rhizobiales root microbiota and their evolutionary relationship with symbiotic rhizobia. Cell Host Microbe 24:1155–67
    [Google Scholar]
  46. 46. 
    Gough C, Cullimore J. 2011. Lipo-chitooligosaccharide signaling in endosymbiotic plant–microbe interactions. Mol. Plant-Microbe Interact. 24:8867–78
    [Google Scholar]
  47. 47. 
    Gourion B, Berrabah F, Ratet P, Stacey G 2015. Rhizobium legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:3186–94
    [Google Scholar]
  48. 48. 
    Guerrero R, Margulis L, Berlanga M 2013. Symbiogenesis: the holobiont as a unit of evolution. Int. Microbiol. 16:3133–43
    [Google Scholar]
  49. 49. 
    Hacquard S, Spaepen S, Garrido-Oter R, Schulze-Lefert P 2017. Interplay between innate immunity and the plant microbiota. Annu. Rev. Phytopathol. 55:565–89
    [Google Scholar]
  50. 50. 
    Hardoim PR, Hardoim CCP, Van Overbeek LS, Van Elsas JD 2012. Dynamics of seed-borne rice endophytes on early plant growth stages. PLOS ONE 7:2e30438
    [Google Scholar]
  51. 51. 
    Harrison JG, Parchman TL, Cook D, Gardner DR, Forister ML 2018. A heritable symbiont and host-associated factors shape fungal endophyte communities across spatial scales. J. Ecol. 106:62274–86
    [Google Scholar]
  52. 52. 
    Haueisen J, Stukenbrock EH. 2016. Life cycle specialization of filamentous pathogens: colonization and reproduction in plant tissues. Curr. Opin. Microbiol. 32:31–37
    [Google Scholar]
  53. 53. 
    Hind SR, Strickler SR, Boyle PC, Dunham DM, Bao Z et al. 2016. Tomato receptor FLAGELLIN-SENSING 3 binds flgII-28 and activates the plant immune system. Nat. Plants. 2:16128
    [Google Scholar]
  54. 54. 
    Hiruma K, Gerlach N, Sacristán S, Nakano RT, Hacquard S et al. 2016. Root endophyte Colletotrichum tofieldiae confers plant fitness benefits that are phosphate status dependent. Cell 165:2464–74
    [Google Scholar]
  55. 55. 
    Horton MW, Bodenhausen N, Beilsmith K, Meng D, Muegge BD et al. 2014. Genome-wide association study of Arabidopsis thaliana leaf microbial community. Nat. Commun. 5:5320
    [Google Scholar]
  56. 56. 
    Jeraldo P, Sipos M, Chia N, Brulc JM, Dhillon AS et al. 2012. Quantification of the relative roles of niche and neutral processes in structuring gastrointestinal microbiomes. PNAS 109:259692–98
    [Google Scholar]
  57. 57. 
    Johnston-Monje D, Raizada MN. 2011. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLOS ONE 6:6e20396
    [Google Scholar]
  58. 58. 
    Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323–29
    [Google Scholar]
  59. 59. 
    Karlsson I, Friberg H, Kolseth A-K, Steinberg C, Persson P 2017. Organic farming increases richness of fungal taxa in the wheat phyllosphere. Mol. Ecol. 26:133424–36
    [Google Scholar]
  60. 60. 
    Katsuragi Y, Takai R, Furukawa T, Hirai H, Morimoto T et al. 2015. CD2–1, the C-terminal region of flagellin, modulates the induction of immune responses in rice. Mol. Plant-Microbe Interact. 28:6648–58
    [Google Scholar]
  61. 61. 
    Kennedy PG, Peay KG, Bruns TD 2009. Root tip competition among ectomycorrhizal fungi: Are priority effects a rule or an exception?. Ecology 90:82098–107
    [Google Scholar]
  62. 62. 
    Khalaf EM, Raizada MN. 2018. Bacterial seed endophytes of domesticated cucurbits antagonize fungal and oomycete pathogens including powdery mildew. Front. Microbiol. 9:42
    [Google Scholar]
  63. 63. 
    Kloppholz S, Kuhn H, Requena N 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:141204–9
    [Google Scholar]
  64. 64. 
    Kovalchuk A, Mukrimin M, Zeng Z, Raffaello T, Liu M et al. 2018. Mycobiome analysis of asymptomatic and symptomatic Norway spruce trees naturally infected by the conifer pathogens Heterobasidion spp. Environ. Microbiol. Rep. 10:5532–41
    [Google Scholar]
  65. 65. 
    Kremer JM, Paasch BC, Rhodes D, Thireault C, Froehlich JE et al. 2018. FlowPot axenic plant growth system for microbiota research. bioRxiv 254953. https://doi.org/10.1101/254953
    [Crossref]
  66. 66. 
    Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G 2004. The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:123496–507
    [Google Scholar]
  67. 67. 
    Lebeis SL, Paredes SH, Lundberg DS, Breakfield N, Gehring J et al. 2015. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:6250860–64
    [Google Scholar]
  68. 68. 
    Leff JW, Jones SE, Prober SM, Barberán A, Borer ET et al. 2015. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PNAS 112:3510967–72
    [Google Scholar]
  69. 69. 
    Leff JW, Lynch RC, Kane NC, Fierer N 2017. Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol. 214:1412–23
    [Google Scholar]
  70. 70. 
    Levy A, Salas Gonzalez I, Mittelviefhaus M, Clingenpeel S, Herrera Paredes S et al. 2018. Genomic features of bacterial adaptation to plants. Nat. Genet. 50:1138–50
    [Google Scholar]
  71. 71. 
    Lo Presti L, Lanver D, Schweizer G, Tanaka S, Liang L et al. 2015. Fungal effectors and plant susceptibility. Annu. Rev. Plant Biol. 66:513–45
    [Google Scholar]
  72. 72. 
    Lu J, Tang T, Tang H, Huang J, Shi S, Wu C-I 2006. The accumulation of deleterious mutations in rice genomes: a hypothesis on the cost of domestication. Trends Genet 22:3126–31
    [Google Scholar]
  73. 73. 
    Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J et al. 2012. Defining the core Arabidopsis thaliana root microbiome. Nature 488:740986–90
    [Google Scholar]
  74. 74. 
    Maekawa T, Kufer TA, Schulze-Lefert P 2011. NLR functions in plant and animal immune systems: so far and yet so close. Nat. Immunol. 12:817–26
    [Google Scholar]
  75. 75. 
    Mahnert A, Ortega RA, Berg C, Grube M, Berg G 2018. Leaves of indoor ornamentals are biodiversity and functional hotspots for fungi. Front. Microbiol. 9:2343
    [Google Scholar]
  76. 76. 
    Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL 2014. Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5:1e00682-13
    [Google Scholar]
  77. 77. 
    Marasco R, Mosqueira MJ, Fusi M, Ramond J-B, Merlino G et al. 2018. Rhizosheath microbial community assembly of sympatric desert speargrasses is independent of the plant host. Microbiome 6:1215
    [Google Scholar]
  78. 78. 
    Martín‐Robles N, Lehmann A, Seco E, Aroca R, Rillig MC, Milla R 2018. Impacts of domestication on the arbuscular mycorrhizal symbiosis of 27 crop species. New Phytol 218:1322–34
    [Google Scholar]
  79. 79. 
    Mathesius U, Mulders S, Gao M, Teplitski M, Caetano-Anollés G et al. 2003. Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. PNAS 100:31444–49
    [Google Scholar]
  80. 80. 
    Mbengue M, Bourdais G, Gervasi F, Beck M, Zhou J et al. 2016. Clathrin-dependent endocytosis is required for immunity mediated by pattern recognition receptor kinases. PNAS 113:3911034–39
    [Google Scholar]
  81. 81. 
    Möller M, Stukenbrock EH. 2017. Evolution and genome architecture in fungal plant pathogens. Nat. Rev. Microbiol. 15:756–71
    [Google Scholar]
  82. 82. 
    Moran NA, Sloan DB. 2015. The hologenome concept: helpful or hollow?. PLOS Biol 13:12e1002311
    [Google Scholar]
  83. 83. 
    Müller DB, Vogel C, Bai Y, Vorholt JA 2016. The plant microbiota: systems-level insights and perspectives. Annu. Rev. Genet. 50:211–34
    [Google Scholar]
  84. 84. 
    Muñoz N, Qi X, Li MW, Xie M, Gao Y et al. 2016. Improvement in nitrogen fixation capacity could be part of the domestication process in soybean. Heredity 117:284–93
    [Google Scholar]
  85. 85. 
    Nürnberger T, Brunner F, Kemmerling B, Piater L 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198:1249–66
    [Google Scholar]
  86. 86. 
    Ofek-Lalzar M, Gur Y, Ben-Moshe S, Sharon O, Kosman E et al. 2016. Diversity of fungal endophytes in recent and ancient wheat ancestors Triticum dicoccoides and Aegilops sharonensis.FEMS Microbiol. Ecol 92:10fiw152
    [Google Scholar]
  87. 87. 
    Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6:10763–75
    [Google Scholar]
  88. 88. 
    Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG et al. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110:166548–53
    [Google Scholar]
  89. 89. 
    Poole P, Ramachandran V, Terpolilli J 2018. Rhizobia: from saprophytes to endosymbionts. Nat. Rev. Microbiol. 16:5291–303
    [Google Scholar]
  90. 90. 
    Porras-Alfaro A, Bayman P. 2011. Hidden fungi, emergent properties: endophytes and microbiomes. Annu. Rev. Phytopathol. 49:291–315
    [Google Scholar]
  91. 91. 
    Ranf S, Gisch N, Schäffer M, Illig T, Westphal L et al. 2015. A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nat. Immunol 16:426–33
    [Google Scholar]
  92. 92. 
    Redford AJ, Bowers RM, Knight R, Linhart Y, Fierer N 2010. The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environ. Microbiol. 12:112885–93
    [Google Scholar]
  93. 93. 
    Renaut S, Rieseberg LH. 2015. The accumulation of deleterious mutations as a consequence of domestication and improvement in sunflowers and other Compositae crops. Mol. Biol. Evol. 32:92273–83
    [Google Scholar]
  94. 94. 
    Rezki S, Campion C, Simoneau P, Jacques M-A, Shade A, Barret M 2018. Assembly of seed-associated microbial communities within and across successive plant generations. Plant Soil 422:1–267–79
    [Google Scholar]
  95. 95. 
    Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C 2009. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:1–2305–39
    [Google Scholar]
  96. 96. 
    Ricklefs RE, Renner SS. 2012. Global correlations in tropical tree species richness and abundance reject neutrality. Science 335:6067464–67
    [Google Scholar]
  97. 97. 
    Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH 2016. Endophytic bacterial community composition in wheat (Triticum aestivum) is determined by plant tissue type, developmental stage and soil nutrient availability. Plant Soil 405:1–2381–96
    [Google Scholar]
  98. 98. 
    Robinson RJ, Fraaije BA, Clark IM, Jackson RW, Hirsch PR, Mauchline TH 2016. Wheat seed embryo excision enables the creation of axenic seedlings and Koch's postulates testing of putative bacterial endophytes. Sci. Rep. 6:25581
    [Google Scholar]
  99. 99. 
    Rosindell J, Hubbell SP, Etienne RS 2011. The unified neutral theory of biodiversity and biogeography at age ten. Trends Ecol. Evol. 26:7340–48
    [Google Scholar]
  100. 100. 
    Santi C, Bogusz D, Franche C 2013. Biological nitrogen fixation in non-legume plants. Ann. Bot. 111:5743–67
    [Google Scholar]
  101. 101. 
    Sapkota R, Jørgensen LN, Nicolaisen M 2017. Spatiotemporal variation and networks in the mycobiome of the wheat canopy. Front. Plant Sci. 8:1357
    [Google Scholar]
  102. 102. 
    Sapkota R, Knorr K, Jørgensen LN, O'Hanlon KA, Nicolaisen M 2015. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol 207:41134–44
    [Google Scholar]
  103. 103. 
    Schardl CL, Leuchtmann A, Spiering MJ 2004. Symbioses of grasses with seedborne fungal endophytes. Annu. Rev. Plant Biol. 55:315–40
    [Google Scholar]
  104. 104. 
    Schikora A, Schenk ST, Stein E, Molitor A, Zuccaro A, Kogel K-H 2011. Acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol 157:31407–18
    [Google Scholar]
  105. 105. 
    Schlaeppi K, Dombrowski N, Oter RG, van Themaat EVL, Schulze-Lefert P 2014. Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. PNAS 111:2585–92
    [Google Scholar]
  106. 106. 
    Schlegel M, Queloz V, Sieber TN 2018. The endophytic mycobiome of European ash and sycamore maple leaves: geographic patterns, host specificity and influence of ash dieback. Front. Microbiol. 9:2345
    [Google Scholar]
  107. 107. 
    Schreiter S, Sandmann M, Smalla K, Grosch R 2014. Soil type dependent rhizosphere competence and biocontrol of two bacterial inoculant strains and their effects on the rhizosphere microbial community of field-grown lettuce. PLOS ONE 9:8e103726
    [Google Scholar]
  108. 108. 
    Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C et al. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant. Cell Environ. 29:5909–18
    [Google Scholar]
  109. 109. 
    Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A et al. 2012. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol. Plant-Microbe Interact. 25:28–36
    [Google Scholar]
  110. 110. 
    Shakya M, Gottel N, Castro H, Yang ZK, Gunter L et al. 2013. A multifactor analysis of fungal and bacterial community structure in the root microbiome of mature Populus deltoides trees. PLOS ONE 8:10e76382
    [Google Scholar]
  111. 111. 
    Tarquinio F, Bourgoure J, Koenders A, Laverock B, Säwström C, Hyndes GA 2018. Microorganisms facilitate uptake of dissolved organic nitrogen by seagrass leaves. ISME J 12:2796–800
    [Google Scholar]
  112. 112. 
    Toju H, Tanabe AS, Sato H 2018. Network hubs in root-associated fungal metacommunities. Microbiome 6:1116
    [Google Scholar]
  113. 113. 
    Toju H, Vannette RL, Gauthier M-PL, Dhami MK, Fukami T 2018. Priority effects can persist across floral generations in nectar microbial metacommunities. Oikos 127:3345–52
    [Google Scholar]
  114. 114. 
    Truyens S, Weyens N, Cuypers A, Vangronsveld J 2015. Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ. Microbiol. Rep. 7:140–50
    [Google Scholar]
  115. 115. 
    Urbina H, Breed MF, Zhao W, Gurrala KL, Andersson SGE et al. 2018. Specificity in Arabidopsis thaliana recruitment of root fungal communities from soil and rhizosphere. Fungal Biol 122:4231–40
    [Google Scholar]
  116. 116. 
    Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A 2015. The importance of the microbiome of the plant holobiont. New Phytol 206:41196–206
    [Google Scholar]
  117. 117. 
    van der Heijden MGA, Hartmann M 2016. Networking in the plant microbiome. PLOS Biol 14:2e1002378
    [Google Scholar]
  118. 118. 
    Vannier N, Bittebiere A-K, Vandenkoornhuyse P, Mony C 2016. AM fungi patchiness and the clonal growth of Glechoma hederacea in heterogeneous environments. Sci. Rep. 6:37852
    [Google Scholar]
  119. 119. 
    Verster AJ, Ross BD, Radey MC, Bao Y, Goodman AL, Mougous JD 2017. The landscape of type VI secretion across human gut microbiomes reveals its role in community composition. Cell Host Microbe 22:3411–19.e4
    [Google Scholar]
  120. 120. 
    Vorholt JA, Vogel C, Carlström CI, Mueller DB 2017. Establishing causality: opportunities of synthetic communities for plant microbiome research. Cell Host Microbe 22:2142–55
    [Google Scholar]
  121. 121. 
    Wagner MR, Lundberg DS, Tijana G, Tringe SG, Dangl JL, Mitchell-Olds T 2016. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat. Commun. 7:12151
    [Google Scholar]
  122. 122. 
    Wallace J, Kremling KA, Kovar LL, Buckler ES 2018. Quantitative genetics of the maize leaf microbiome. Phytobiomes J 2:208–24
    [Google Scholar]
  123. 123. 
    Xin X-F, Nomura K, Aung K, Velásquez AC, Yao J et al. 2016. Bacteria establish an aqueous living space in plants crucial for virulence. Nature 539:524–29
    [Google Scholar]
  124. 124. 
    Xing X, Koch AM, Jones AM, Ragone D, Murch S, Hart MM 2012. Mutualism breakdown in breadfruit domestication. Proc. R. Soc. B 279:17311122–30
    [Google Scholar]
  125. 125. 
    Xu J, Zhang Y, Zhang P, Trivedi P, Riera N et al. 2018. The structure and function of the global citrus rhizosphere microbiome. Nat. Commun. 9:4894
    [Google Scholar]
  126. 126. 
    Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R et al. 2017. Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat. Commun. 8:215
    [Google Scholar]
  127. 127. 
    Zachow C, Müller H, Tilcher R, Berg G 2014. Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima—ancestor of all beet crops—and modern sugar beets. Front. Microbiol. 5:415
    [Google Scholar]
  128. 128. 
    Zahran HH. 1999. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol. Mol. Biol. Rev. 63:4968–989
    [Google Scholar]
  129. 129. 
    Zilber-Rosenberg I, Rosenberg E. 2008. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. 32:5723–35
    [Google Scholar]
  130. 130. 
    Zipfel C. 2014. Plant pattern-recognition receptors. Trends Immunol 35:7345–51
    [Google Scholar]
  131. 131. 
    Zipfel C, Oldroyd GED. 2017. Plant signalling in symbiosis and immunity. Nature 543:328–36
    [Google Scholar]
/content/journals/10.1146/annurev-phyto-082718-100008
Loading
/content/journals/10.1146/annurev-phyto-082718-100008
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error