1932

Abstract

Information processing imposes urgent metabolic demands on neurons, which have negligible energy stores and restricted access to fuel. Here, we discuss metabolic recruitment, the tissue-level phenomenon whereby active neurons harvest resources from their surroundings. The primary event is the neuronal release of K+ that mirrors workload. Astrocytes sense K+ in exquisite fashion thanks to their unique coexpression of NBCe1 and α2β2 Na+/K+ ATPase, and within seconds switch to Crabtree metabolism, involving GLUT1, aerobic glycolysis, transient suppression of mitochondrial respiration, and lactate export. The lactate surge serves as a secondary recruiter by inhibiting glucose consumption in distant cells. Additional recruiters are glutamate, nitric oxide, and ammonium, which signal over different spatiotemporal domains. The net outcome of these events is that more glucose, lactate, and oxygen are made available. Metabolic recruitment works alongside neurovascular coupling and various averaging strategies to support the inordinate dynamic range of individual neurons.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-021422-091035
2023-02-10
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/physiol/85/1/annurev-physiol-021422-091035.html?itemId=/content/journals/10.1146/annurev-physiol-021422-091035&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Baeza-Lehnert F, Saab AS, Gutierrez R, Larenas V, Diaz E et al. 2019. Non-canonical control of neuronal energy status by the Na+ pump. Cell Metab. 29:668–80
    [Google Scholar]
  2. 2.
    Heineman FW, Balaban RS. 1990. Phosphorus-31 nuclear magnetic resonance analysis of transient changes of canine myocardial metabolism in vivo. J. Clin. Investig. 85:843–52
    [Google Scholar]
  3. 3.
    Hochachka PW, McClelland GB. 1997. Cellular metabolic homeostasis during large-scale change in ATP turnover rates in muscles. J. Exp. Biol. 200:381–86
    [Google Scholar]
  4. 4.
    Steriade M, McCormick DA, Sejnowski TJ. 1993. Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–85
    [Google Scholar]
  5. 5.
    Attwell D, Laughlin SB. 2001. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21:1133–45
    [Google Scholar]
  6. 6.
    Bushong EA, Martone ME, Jones YZ, Ellisman MH. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22:183–92
    [Google Scholar]
  7. 7.
    Mathiisen TM, Lehre KP, Danbolt NC, Ottersen OP. 2010. The perivascular astroglial sheath provides a complete covering of the brain microvessels: an electron microscopic 3D reconstruction. Glia 58:1094–103
    [Google Scholar]
  8. 8.
    Dringen R, Gebhardt R, Hamprecht B. 1993. Glycogen in astrocytes: possible function as lactate supply for neighboring cells. Brain Res. 623:208–14
    [Google Scholar]
  9. 9.
    Swanson RA. 1992. Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can. J. Physiol. Pharmacol. 70:Suppl.S138–44
    [Google Scholar]
  10. 10.
    Tsacopoulos M, Magistretti PJ. 1996. Metabolic coupling between glia and neurons. J. Neurosci. 16:877–85
    [Google Scholar]
  11. 11.
    Barros LF, Weber B. 2018. CrossTalk proposal: an important astrocyte-to-neuron lactate shuttle couples neuronal activity to glucose utilisation in the brain. J. Physiol. 596:347–50
    [Google Scholar]
  12. 12.
    Bonvento G, Bolanos JP. 2021. Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33:1546–64
    [Google Scholar]
  13. 13.
    Magistretti PJ, Allaman I. 2018. Lactate in the brain: from metabolic end-product to signalling molecule. Nat. Rev. Neurosci. 19:235–49
    [Google Scholar]
  14. 14.
    Pellerin L, Magistretti PJ. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. PNAS 91:10625–29
    [Google Scholar]
  15. 15.
    Loaiza A, Porras OH, Barros LF. 2003. Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J. Neurosci. 23:7337–42
    [Google Scholar]
  16. 16.
    Erecinska M, Silver IA. 1994. Ions and energy in mammalian brain. Prog. Neurobiol. 43:37–71
    [Google Scholar]
  17. 17.
    Harris JJ, Jolivet R, Attwell D. 2012. Synaptic energy use and supply. Neuron 75:762–77
    [Google Scholar]
  18. 18.
    Rusakov DA, Kullmann DM. 1998. Extrasynaptic glutamate diffusion in the hippocampus: ultrastructural constraints, uptake, and receptor activation. J. Neurosci. 18:3158–70
    [Google Scholar]
  19. 19.
    Bittner CX, Valdebenito R, Ruminot I, Loaiza A, Larenas V et al. 2011. Fast and reversible stimulation of astrocytic glycolysis by K+ and a delayed and persistent effect of glutamate. J. Neurosci. 31:4709–13
    [Google Scholar]
  20. 20.
    Rangaraju V, Calloway N, Ryan TA. 2014. Activity-driven local ATP synthesis is required for synaptic function. Cell 156:825–35
    [Google Scholar]
  21. 21.
    Diaz-Garcia CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. 2017. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 26:361–74
    [Google Scholar]
  22. 22.
    Barros LF. 2022. How expensive is the astrocyte?. J. Cereb. Blood Flow Metab. 42:738–45
    [Google Scholar]
  23. 23.
    Shih PY, Savtchenko LP, Kamasawa N, Dembitskaya Y, McHugh TJ et al. 2013. Retrograde synaptic signaling mediated by K+ efflux through postsynaptic NMDA receptors. Cell Rep. 5:941–51
    [Google Scholar]
  24. 24.
    Sykova E. 1983. Extracellular K+ accumulation in the central nervous system. Prog. Biophys. Mol. Biol. 42:135–89
    [Google Scholar]
  25. 25.
    Frohlich F, Bazhenov M, Iragui-Madoz V, Sejnowski TJ. 2008. Potassium dynamics in the epileptic cortex: new insights on an old topic. Neuroscientist 14:422–33
    [Google Scholar]
  26. 26.
    Rasmussen R, Nicholas E, Petersen NC, Dietz AG, Xu Q et al. 2019. Cortex-wide changes in extracellular potassium ions parallel brain state transitions in awake behaving mice. Cell Rep. 28:1182–94
    [Google Scholar]
  27. 27.
    Ding F, O'Donnell J, Xu Q, Kang N, Goldman N, Nedergaard M 2016. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 352:550–55
    [Google Scholar]
  28. 28.
    Armbruster M, Naskar S, Garcia JP, Sommer M, Kim E et al. 2022. Neuronal activity drives pathway-specific depolarization of peripheral astrocyte processes. Nat. Neurosci. 25:607–16
    [Google Scholar]
  29. 29.
    Bergles DE, Jahr CE. 1997. Synaptic activation of glutamate transporters in hippocampal astrocytes. Neuron 19:1297–308
    [Google Scholar]
  30. 30.
    Lehre KP, Danbolt NC. 1998. The number of glutamate transporter subtype molecules at glutamatergic synapses: chemical and stereological quantification in young adult rat brain. J. Neurosci. 18:8751–57
    [Google Scholar]
  31. 31.
    D'Ambrosio R, Gordon DS, Winn HR 2002. Differential role of KIR channel and Na+/K+-pump in the regulation of extracellular K+ in rat hippocampus. J. Neurophysiol. 87:87–102
    [Google Scholar]
  32. 32.
    Larsen BR, Stoica A, MacAulay N. 2016. Managing brain extracellular K+ during neuronal activity: the physiological role of the Na+/K+-ATPase subunit isoforms. Front. Physiol. 7:141
    [Google Scholar]
  33. 33.
    Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M et al. 2014. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–22
    [Google Scholar]
  34. 34.
    Ransom BR, Yamate CL, Connors BW. 1985. Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J. Neurosci. 5:532–35
    [Google Scholar]
  35. 35.
    MacAulay N. 2020. Molecular mechanisms of K+ clearance and extracellular space shrinkage—glia cells as the stars. Glia 68:2192–211
    [Google Scholar]
  36. 36.
    Harik SI, Mitchell MJ, Kalaria RN. 1989. Ouabain binding in the human brain. Effects of Alzheimer's disease and aging. Arch. Neurol. 46:951–54
    [Google Scholar]
  37. 37.
    Bennay M, Langer J, Meier SD, Kafitz KW, Rose CR. 2008. Sodium signals in cerebellar Purkinje neurons and Bergmann glial cells evoked by glutamatergic synaptic transmission. Glia 56:1138–49
    [Google Scholar]
  38. 38.
    Langer J, Rose CR. 2009. Synaptically induced sodium signals in hippocampal astrocytes in situ. J. Physiol. 587:5859–77
    [Google Scholar]
  39. 39.
    Kuffler SW, Nicholls JG, Orkand RK. 1966. Physiological properties of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29:768–87
    [Google Scholar]
  40. 40.
    Blanco G, Koster JC, Sanchez G, Mercer RW. 1995. Kinetic properties of the α2β1 and α2β2 isozymes of the Na, K-ATPase. Biochemistry 34:319–25
    [Google Scholar]
  41. 41.
    Crambert G, Hasler U, Beggah AT, Yu C, Modyanov NN et al. 2000. Transport and pharmacological properties of nine different human Na, K-ATPase isozymes. J. Biol. Chem. 275:1976–86
    [Google Scholar]
  42. 42.
    Stanley CM, Gagnon DG, Bernal A, Meyer DJ, Rosenthal JJ, Artigas P. 2015. Importance of the voltage dependence of cardiac Na/K ATPase isozymes. Biophys. J. 109:1852–62
    [Google Scholar]
  43. 43.
    Hille B. 2001. Ion Channels of Excitable Membranes Sunderland, MA: Sinauer Assoc.
  44. 44.
    Florence CM, Baillie LD, Mulligan SJ. 2012. Dynamic volume changes in astrocytes are an intrinsic phenomenon mediated by bicarbonate ion flux. PLOS ONE 7:e51124
    [Google Scholar]
  45. 45.
    Larsen BR, MacAulay N. 2017. Activity-dependent astrocyte swelling is mediated by pH-regulating mechanisms. Glia 65:1668–81
    [Google Scholar]
  46. 46.
    Black JA, Waxman SG. 2013. Noncanonical roles of voltage-gated sodium channels. Neuron 80:280–91
    [Google Scholar]
  47. 47.
    Sontheimer H, Fernandez-Marques E, Ullrich N, Pappas CA, Waxman SG. 1994. Astrocyte Na+ channels are required for maintenance of Na+/K+-ATPase activity. J. Neurosci. 14:2464–75
    [Google Scholar]
  48. 48.
    Verkhratsky A, Nedergaard M. 2018. Physiology of astroglia. Physiol. Rev. 98:239–389
    [Google Scholar]
  49. 49.
    Orkand RK, Nicholls JG, Kuffler SW. 1966. Effect of nerve impulses on the membrane potential of glial cells in the central nervous system of amphibia. J. Neurophysiol. 29:788–806
    [Google Scholar]
  50. 50.
    Kofuji P, Newman EA. 2004. Potassium buffering in the central nervous system. Neuroscience 129:1045–56
    [Google Scholar]
  51. 51.
    Chever O, Djukic B, McCarthy KD, Amzica F. 2010. Implication of Kir4.1 channel in excess potassium clearance: an in vivo study on anesthetized glial-conditional Kir4.1 knock-out mice. J. Neurosci. 30:15769–77
    [Google Scholar]
  52. 52.
    Larson VA, Mironova Y, Vanderpool KG, Waisman A, Rash JE et al. 2018. Oligodendrocytes control potassium accumulation in white matter and seizure susceptibility. eLife 7:e34829
    [Google Scholar]
  53. 53.
    Wallraff A, Kohling R, Heinemann U, Theis M, Willecke K, Steinhauser C. 2006. The impact of astrocytic gap junctional coupling on potassium buffering in the hippocampus. J. Neurosci. 26:5438–47
    [Google Scholar]
  54. 54.
    Chesler M, Kraig RP. 1987. Intracellular pH of astrocytes increases rapidly with cortical stimulation. Am. J. Physiol. 253:R666–70
    [Google Scholar]
  55. 55.
    Deitmer JW, Szatkowski M. 1990. Membrane potential dependence of intracellular pH regulation by identified glial cells in the leech central nervous system. J. Physiol. 421:617–31
    [Google Scholar]
  56. 56.
    Pappas CA, Ransom BR. 1994. Depolarization-induced alkalinization (DIA) in rat hippocampal astrocytes. J. Neurophysiol. 72:2816–26
    [Google Scholar]
  57. 57.
    Ruminot I, Gutierrez R, Peña-Munzenmeyer G, Añazco C, Sotelo-Hitschfeld T et al. 2011. NBCe1 mediates the acute stimulation of astrocytic glycolysis by extracellular K+. J. Neurosci. 31:14264–71
    [Google Scholar]
  58. 58.
    Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK et al. 2006. Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat. Neurosci. 9:1397–403
    [Google Scholar]
  59. 59.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, MacVicar BA, Newman EA. 2010. Glial and neuronal control of brain blood flow. Nature 468:232–43
    [Google Scholar]
  60. 60.
    Hosford PS, Gourine AV. 2019. What is the key mediator of the neurovascular coupling response?. Neurosci. Biobehav. Rev. 96:174–81
    [Google Scholar]
  61. 61.
    Sokoloff L, Reivich M, Kennedy C, Des Rosiers MH, Patlak CS et al. 1977. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28:897–916
    [Google Scholar]
  62. 62.
    Reivich M, Kuhl D, Wolf A, Greenberg J, Phelps M et al. 1979. The [18F] fluorodeoxyglucose method for the measurement of local cerebral glucose utilization in man. Circ. Res. 44:127–37
    [Google Scholar]
  63. 63.
    Mata M, Fink DJ, Gainer H, Smith CB, Davidsen L et al. 1980. Activity-dependent energy metabolism in rat posterior pituitary primarily reflects sodium pump activity. J. Neurochem. 34:213–15
    [Google Scholar]
  64. 64.
    Nehlig A, Wittendorp-Rechenmann E, Lam CD. 2004. Selective uptake of [14C]2-deoxyglucose by neurons and astrocytes: high-resolution microautoradiographic imaging by cellular 14C-trajectography combined with immunohistochemistry. J. Cereb. Blood Flow Metab. 24:1004–14
    [Google Scholar]
  65. 65.
    Brookes N, Yarowsky PJ. 1985. Determinants of deoxyglucose uptake in cultured astrocytes: the role of the sodium pump. J. Neurochem. 44:473–79
    [Google Scholar]
  66. 66.
    Peng L, Zhang X, Hertz L. 1994. High extracellular potassium concentrations stimulate oxidative metabolism in a glutamatergic neuronal culture and glycolysis in cultured astrocytes but have no stimulatory effect in a GABAergic neuronal culture. Brain Res. 663:168–72
    [Google Scholar]
  67. 67.
    Takahashi S, Driscoll BF, Law MJ, Sokoloff L. 1995. Role of sodium and potassium ions in regulation of glucose metabolism in cultured astroglia. PNAS 92:4616–20
    [Google Scholar]
  68. 68.
    Yarowsky P, Boyne AF, Wierwille R, Brookes N. 1986. Effect of monensin on deoxyglucose uptake in cultured astrocytes: energy metabolism is coupled to sodium entry. J. Neurosci. 6:859–66
    [Google Scholar]
  69. 69.
    Brines ML, Robbins RJ. 1993. Cell-type specific expression of Na+, K+-ATPase catalytic subunits in cultured neurons and glia: evidence for polarized distribution in neurons. Brain Res. 631:1–11
    [Google Scholar]
  70. 70.
    Peng L, Arystarkhova E, Sweadner KJ. 1998. Plasticity of Na,K-ATPase isoform expression in cultures of flat astrocytes: species differences in gene expression. Glia 24:257–71
    [Google Scholar]
  71. 71.
    Hasel P, Dando O, Jiwaji Z, Baxter P, Todd AC et al. 2017. Neurons and neuronal activity control gene expression in astrocytes to regulate their development and metabolism. Nat. Commun. 8:15132
    [Google Scholar]
  72. 72.
    Mamczur P, Borsuk B, Paszko J, Sas Z, Mozrzymas J et al. 2015. Astrocyte-neuron crosstalk regulates the expression and subcellular localization of carbohydrate metabolism enzymes. Glia 63:328–40
    [Google Scholar]
  73. 73.
    Takanaga H, Chaudhuri B, Frommer WB. 2008. GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor. Biochim. Biophys. Acta 1778:1091–99
    [Google Scholar]
  74. 74.
    Fernandez-Moncada I, Robles-Maldonado D, Castro P, Alegría K, Epp R et al. 2020. Bidirectional astrocytic GLUT1 activation by elevated extracellular K+. Glia 69:1012–21
    [Google Scholar]
  75. 75.
    Barros LF, Bittner CX, Loaiza A, Porras OH. 2007. A quantitative overview of glucose dynamics in the gliovascular unit. Glia 55:1222–37
    [Google Scholar]
  76. 76.
    Barros LF, San MA, Ruminot I, Sandoval PY, Fernandez-Moncada I et al. 2017. Near-critical GLUT1 and neurodegeneration. J. Neurosci. Res. 95:2267–74
    [Google Scholar]
  77. 77.
    Korogod N, Petersen CC, Knott GW. 2015. Ultrastructural analysis of adult mouse neocortex comparing aldehyde perfusion with cryo fixation. eLife 4:e05793
    [Google Scholar]
  78. 78.
    Bittner CX, Loaiza A, Ruminot I, Larenas V, Sotelo-Hitschfeld T et al. 2010. High resolution measurement of the glycolytic rate. Front. Neuroenerget. 2:26
    [Google Scholar]
  79. 79.
    Ruminot I, Schmalzle J, Leyton B, Barros LF, Deitmer JW. 2017. Tight coupling of astrocyte energy metabolism to synaptic activity revealed by genetically encoded FRET nanosensors in hippocampal tissue. J. Cereb. Blood Flow Metab. 39:513–23
    [Google Scholar]
  80. 80.
    Fernandez-Moncada I, Ruminot I, Robles-Maldonado D, Alegria K, Deitmer JW, Barros LF. 2018. Neuronal control of astrocytic respiration through a variant of the Crabtree effect. PNAS 115:1623–28
    [Google Scholar]
  81. 81.
    Kohler S, Winkler U, Sicker M, Hirrlinger J. 2018. NBCe1 mediates the regulation of the NADH/NAD+ redox state in cortical astrocytes by neuronal signals. Glia 66:2233–45
    [Google Scholar]
  82. 82.
    Newman LA, Korol DL, Gold PE. 2011. Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLOS ONE 6:e28427
    [Google Scholar]
  83. 83.
    Zuend M, Saab AS, Wyss MT, Ferrari KD, Hösli L et al. 2020. Arousal-induced cortical activity triggers lactate release from astrocytes. Nat. Metab. 2:179–91
    [Google Scholar]
  84. 84.
    Fox PT, Raichle ME, Mintun MA, Dence C. 1988. Nonoxidative glucose consumption during focal physiologic neural activity. Science 241:462–64
    [Google Scholar]
  85. 85.
    Prichard J, Rothman D, Novotny E, Petroff O, Kuwabara T et al. 1991. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. PNAS 88:5829–31
    [Google Scholar]
  86. 86.
    Magistretti PJ, Chatton JY. 2005. Relationship between L-glutamate-regulated intracellular Na+ dynamics and ATP hydrolysis in astrocytes. J. Neural Transm. 112:77–85
    [Google Scholar]
  87. 87.
    Lange SC, Winkler U, Andresen L, Byhro M, Waagepetersen HS et al. 2015. Dynamic changes in cytosolic ATP levels in cultured glutamatergic neurons during NMDA-induced synaptic activity supported by glucose or lactate. Neurochem. Res. 40:2517–26
    [Google Scholar]
  88. 88.
    Lerchundi R, Kafitz KW, Winkler U, Farfers M, Hirrlinger J, Rose CR. 2019. FRET-based imaging of intracellular ATP in organotypic brain slices. J. Neurosci. Res. 97:933–45
    [Google Scholar]
  89. 89.
    Barros LF, San Martin A, Ruminot I, Sandoval PY, Baeza-Lehnert F et al. 2020. Fluid brain glycolysis: limits, speed, location, moonlighting, and the fates of glycogen and lactate. Neurochem. Res. 45:1328–34
    [Google Scholar]
  90. 90.
    Trivedi B, Danforth WH. 1966. Effect of pH on the kinetics of frog muscle phosphofructokinase. J. Biol. Chem. 241:4110–12
    [Google Scholar]
  91. 91.
    Chesler M, Kraig RP. 1989. Intracellular pH transients of mammalian astrocytes. J. Neurosci. 9:2011–19
    [Google Scholar]
  92. 92.
    Theparambil SM, Hosford PS, Ruminot I, Kopach O, Reynolds JR et al. 2020. Astrocytes regulate brain extracellular pH via a neuronal activity-dependent bicarbonate shuttle. Nat. Commun. 11:5073
    [Google Scholar]
  93. 93.
    Choi HB, Gordon GR, Zhou N, Tai C, Rungta RL et al. 2012. Metabolic communication between astrocytes and neurons via bicarbonate-responsive soluble adenylyl cyclase. Neuron 75:1094–104
    [Google Scholar]
  94. 94.
    Jakobsen E, Andersen JV, Christensen SK, Siamka O, Larsen MR et al. 2021. Pharmacological inhibition of mitochondrial soluble adenylyl cyclase in astrocytes causes activation of AMP-activated protein kinase and induces breakdown of glycogen. Glia 69:2828–44
    [Google Scholar]
  95. 95.
    Hertz L, Xu J, Song D, Du T, Li B et al. 2015. Astrocytic glycogenolysis: mechanisms and functions. Metab. Brain Dis. 30:317–33
    [Google Scholar]
  96. 96.
    Hof PR, Pascale E, Magistretti PJ 1988. K+ at concentrations reached in the extracellular space during neuronal activity promotes a Ca2+-dependent glycogen hydrolysis in mouse cerebral cortex. J. Neurosci. 8:1922–28
    [Google Scholar]
  97. 97.
    Machler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R et al. 2016. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab. 23:94–102
    [Google Scholar]
  98. 98.
    Gonzalez-Gutierrez A, Ibacache A, Esparza A, Barros LF, Sierralta J. 2019. Neuronal lactate levels depend on glia-derived lactate during high brain activity in Drosophila. Glia 68:1213–27
    [Google Scholar]
  99. 99.
    Sotelo-Hitschfeld T, Niemeyer MI, Machler P, Ruminot I, Lerchundi R et al. 2015. Channel-mediated lactate release by K+-stimulated astrocytes. J. Neurosci. 35:4168–78
    [Google Scholar]
  100. 100.
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:11929–47
    [Google Scholar]
  101. 101.
    Karagiannis A, Sylantyev S, Hadjihambi A, Hosford PS, Kasparov S, Gourine AV. 2016. Hemichannel-mediated release of lactate. J. Cereb. Blood Flow Metab. 36:1202–11
    [Google Scholar]
  102. 102.
    Sotelo-Hitschfeld T, Fernandez-Moncada I, Barros LF. 2012. Acute feedback control of astrocytic glycolysis by lactate. Glia 60:674–80
    [Google Scholar]
  103. 103.
    Hu Y, Wilson GS. 1997. A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-response enzyme-based sensor. J. Neurochem. 69:1484–90
    [Google Scholar]
  104. 104.
    Hosford PS, Wells JA, Ruminot I, Christie IN, Theparambil SM et al. 2022. CO2 signalling mediates neurovascular coupling in the cerebral cortex. Nat. Comm. 13:2125
    [Google Scholar]
  105. 105.
    Sonnay S, Poirot J, Just N, Clerc AC, Gruetter R et al. 2018. Astrocytic and neuronal oxidative metabolism are coupled to the rate of glutamate-glutamine cycle in the tree shrew visual cortex. Glia 66:477–91
    [Google Scholar]
  106. 106.
    Barros LF, Ruminot I, San Martín A, Lerchundi R, Fernández-Moncada I, Baeza-Lehnert F. 2021. Aerobic glycolysis in the brain: Warburg and Crabtree contra Pasteur. Neurochem. Res. 46:15–22
    [Google Scholar]
  107. 107.
    Schousboe A, Scafidi S, Bak LK, Waagepetersen HS, McKenna MC. 2014. Glutamate metabolism in the brain focusing on astrocytes. Adv. Neurobiol. 11:13–30
    [Google Scholar]
  108. 108.
    Rothman DL, De Feyter HM, Maciejewski PK, Behar KL. 2012. Is there in vivo evidence for amino acid shuttles carrying ammonia from neurons to astrocytes?. Neurochem. Res. 37:2597–612
    [Google Scholar]
  109. 109.
    Tashiro S. 1922. Studies on alkaligenesis in tissues. Am. J. Physiol. 60:519–43
    [Google Scholar]
  110. 110.
    Richter D, Dawson RM. 1948. The ammonia and glutamine content of the brain. J. Biol. Chem. 176:1199–210
    [Google Scholar]
  111. 111.
    Tsukada Y, Takagaki G, Sugimoto S, Hirano S. 1958. Changes in the ammonia and glutamine content of the rat brain induced by electric shock. J. Neurochem. 2:295–303
    [Google Scholar]
  112. 112.
    Marcaggi P. 2006. An ammonium flux from neurons to glial cells Presented at the Physiological Society Main Meeting London, UK:
  113. 113.
    Kelly T, Rose CR. 2010. Ammonium influx pathways into astrocytes and neurones of hippocampal slices. J. Neurochem. 115:1123–36
    [Google Scholar]
  114. 114.
    Rangroo TV, Thrane AS, Wang F, Cotrina ML, Smith NA et al. 2013. Ammonia triggers neuronal disinhibition and seizures by impairing astrocyte potassium buffering. Nat. Med. 19:1643–48
    [Google Scholar]
  115. 115.
    Lerchundi R, Fernandez-Moncada I, Contreras-Baeza Y, Sotelo-Hitschfeld T, Machler P et al. 2015. NH4+ triggers the release of astrocytic lactate via mitochondrial pyruvate shunting. PNAS 112:11090–95
    [Google Scholar]
  116. 116.
    Almeida A, Moncada S, Bolanos JP. 2004. Nitric oxide switches on glycolysis through the AMP protein kinase and 6-phosphofructo-2-kinase pathway. Nat. Cell Biol. 6:45–51
    [Google Scholar]
  117. 117.
    San Martín A, Arce-Molina R, Galaz A, Perez-Guerra G, Barros LF. 2017. Nanomolar nitric oxide concentrations quickly and reversibly modulate astrocytic energy metabolism. J. Biol. Chem. 292:9432–38
    [Google Scholar]
  118. 118.
    Devor A, Sakadzic S, Saisan PA, Yaseen MA, Roussakis E et al. 2011.. “ Overshoot” of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31:13676–81
    [Google Scholar]
  119. 119.
    Cisternas P, Salazar P, Silva-Alvarez C, Barros LF, Inestrosa NC. 2016. Activation of Wnt signaling in cortical neurons enhances glucose utilization through glycolysis. J. Biol. Chem. 291:25950–64
    [Google Scholar]
  120. 120.
    Segarra-Mondejar M, Casellas-Diaz S, Ramiro-Pareta M, Muller-Sanchez C, Martorell-Riera A et al. 2018. Synaptic activity-induced glycolysis facilitates membrane lipid provision and neurite outgrowth. EMBO J. 37:e97368
    [Google Scholar]
  121. 121.
    Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C et al. 2020. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 583:603–8
    [Google Scholar]
  122. 122.
    Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH et al. 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–23
    [Google Scholar]
  123. 123.
    Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. 2014. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab. 19:49–57
    [Google Scholar]
  124. 124.
    Roumes H, Jolle C, Blanc J, Benkhaled I, Chatain CP et al. 2021. Lactate transporters in the rat barrel cortex sustain whisker-dependent BOLD fMRI signal and behavioral performance. PNAS 118:e2112466118
    [Google Scholar]
  125. 125.
    Barros LF, San Martin A, Sotelo-Hitschfeld T, Lerchundi R, Fernandez-Moncada I et al. 2013. Small is fast: astrocytic glucose and lactate metabolism at cellular resolution. Front. Cell Neurosci. 7:27
    [Google Scholar]
  126. 126.
    Ogawa S, Lee TM, Kay AR, Tank DW. 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. PNAS 87:9868–72
    [Google Scholar]
  127. 127.
    Hu Y, Wilson GS. 1997. Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J. Neurochem. 68:1745–52
    [Google Scholar]
  128. 128.
    Giaume C, Tabernero A, Medina JM. 1997. Metabolic trafficking through astrocytic gap junctions. Glia 21:114–23
    [Google Scholar]
  129. 129.
    Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C. 2008. Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1551–55
    [Google Scholar]
  130. 130.
    Clasadonte J, Scemes E, Wang Z, Boison D, Haydon PG. 2017. Connexin 43-mediated astroglial metabolic networks contribute to the regulation of the sleep-wake cycle. Neuron 95:1365–80
    [Google Scholar]
  131. 131.
    Murphy-Royal C, Johnston AD, Boyce AKJ, Diaz-Castro B, Institoris A et al. 2020. Stress gates an astrocytic energy reservoir to impair synaptic plasticity. Nat. Commun. 11:2014
    [Google Scholar]
  132. 132.
    Heinemann U, Schaible HG, Schmidt RF. 1990. Changes in extracellular potassium concentration in cat spinal cord in response to innocuous and noxious stimulation of legs with healthy and inflamed knee joints. Exp. Brain Res. 79:283–92
    [Google Scholar]
  133. 133.
    Bozzo L, Puyal J, Chatton JY. 2013. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLOS ONE 8:e71721
    [Google Scholar]
  134. 134.
    de Castro AH, Briquet M, Schmuziger C, Restivo L, Puyal J et al. 2019. The lactate receptor HCAR1 modulates neuronal network activity through the activation of Gα and Gβγ subunits. J. Neurosci. 39:4422–33
    [Google Scholar]
  135. 135.
    Herrera-Lopez G, Galvan EJ. 2018. Modulation of hippocampal excitability via the hydroxycarboxylic acid receptor 1. Hippocampus 28:557–67
    [Google Scholar]
  136. 136.
    Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G et al. 2014. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. PNAS 111:12228–33
    [Google Scholar]
  137. 137.
    Karagiannis A, Gallopin T, Lacroix A, Plaisier F, Piquet J et al. 2021. Lactate is an energy substrate for rodent cortical neurons and enhances their firing activity. eLife 10:e71424
    [Google Scholar]
  138. 138.
    Herrera-Lopez G, Griego E, Galvan EJ 2020. Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLOS ONE 15:e0242309
    [Google Scholar]
  139. 139.
    Barros LF, Baeza-Lehnert F. 2019. Perfect energy stability in neurons. Aging 11:6622–23
    [Google Scholar]
  140. 140.
    Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P et al. 2016. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–32
    [Google Scholar]
  141. 141.
    Hartline HK, Wagner HG, Ratliff F. 1956. Inhibition in the eye of Limulus. J. Gen. Physiol. 39:651–73
    [Google Scholar]
  142. 142.
    Navon D, Gopher D. 1979. On the economy of the human-processing system. Psychol. Rev. 86:214–55
    [Google Scholar]
  143. 143.
    Bruckmaier M, Tachtsidis I, Phan P, Lavie N. 2020. Attention and capacity limits in perception: a cellular metabolism account. J. Neurosci. 40:6801–11
    [Google Scholar]
  144. 144.
    Kording KP, Kayser C, Konig P. 2003. On the choice of a sparse prior. Rev. Neurosci. 14:53–62
    [Google Scholar]
  145. 145.
    Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14:481–87
    [Google Scholar]
  146. 146.
    Barros LF, Bolanos JP, Bonvento G, Bouzier-Sore AK, Brown A et al. 2018. Current technical approaches to brain energy metabolism. Glia 66:1138–59
    [Google Scholar]
  147. 147.
    Barros LF, Brown A, Swanson RA. 2018. Glia in brain energy metabolism: a perspective. Glia 66:1134–37
    [Google Scholar]
  148. 148.
    San Martín A, Arce-Molina R, Aburto C, Baeza-Lehnert F, Barros LF et al. 2022. Visualizing physiological parameters in cells and tissues using genetically encoded indicators for metabolites. Free Radic. Biol. Med. 182:34–58
    [Google Scholar]
  149. 149.
    Brancati GE, Rawas C, Ghestem A, Bernard C, Ivanov AI. 2021. Spatio-temporal heterogeneity in hippocampal metabolism in control and epilepsy conditions. PNAS 118:e2013972118
    [Google Scholar]
  150. 150.
    Zhang Y, Barres BA. 2010. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20:588–94
    [Google Scholar]
  151. 151.
    Escartin C, Galea E, Lakatos A, O'Callaghan JP, Petzold GC et al. 2021. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 24:312–25
    [Google Scholar]
  152. 152.
    Le Douce J, Maugard M, Veran J, Matos M, Jego P et al. 2020. Impairment of glycolysis-derived l-serine production in astrocytes contributes to cognitive deficits in Alzheimer's disease. Cell Metab. 31:503–17
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-021422-091035
Loading
/content/journals/10.1146/annurev-physiol-021422-091035
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error