1932

Abstract

Cell-based immunotherapies using T cells that are engineered to express a chimeric antigen receptor (CAR-T cells) are an effective treatment option for several B cell malignancies. Compared with most drugs, CAR-T cell products are highly complex, as each cell product is composed of a heterogeneous mixture of millions of cells. The biodistribution and kinetics of CAR-T cells, following administration, are unique given the ability of T cells to actively migrate as well as replicate within the patient. CAR-T cell therapies also have multiple mechanisms of action that contribute to both their antitumor activity and their toxicity. This review provides an overview of the unique pharmacology of CAR-T cells, with a focus on CD19-targeting and B cell maturation antigen (BCMA)-targeting CAR-T cells.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-031720-102211
2021-01-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/61/1/annurev-pharmtox-031720-102211.html?itemId=/content/journals/10.1146/annurev-pharmtox-031720-102211&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Eschner K. 2017. 350 years ago, a doctor performed the first human blood transfusion. A sheep was involved. Smithson. Mag. Jun. 15. https://www.smithsonianmag.com/smart-news/350-years-ago-doctor-performed-first-human-blood-transfusion-sheep-was-involved-180963631/
    [Google Scholar]
  2. 2. 
    Eshhar Z, Waks T, Gross G, Schindler DG 1993. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. PNAS 90:720–24
    [Google Scholar]
  3. 3. 
    Sadelain M, Brentjens R, Rivière I 2013. The basic principles of chimeric antigen receptor design. Cancer Discov 3:388–98
    [Google Scholar]
  4. 4. 
    Wang X, Rivière I. 2016. Clinical manufacturing of CAR T cells: foundation of a promising therapy. Mol. Ther. Oncolytics 3:16015
    [Google Scholar]
  5. 5. 
    Marcucci KT, Jadlowsky JK, Hwang W-T, Suhoski-Davis M, Gonzalez VE et al. 2018. Retroviral and lentiviral safety analysis of gene-modified T cell products and infused HIV and oncology patients. Mol. Ther. 26:269–79
    [Google Scholar]
  6. 6. 
    Kebriaei P, Singh H, Huls MH, Figliola MJ, Bassett R et al. 2016. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Investig. 126:3363–76
    [Google Scholar]
  7. 7. 
    Gregory T, Cohen AD, Costello CL, Ali SA, Berdeja JG et al. 2018. Efficacy and safety of P-BCMA-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM). Blood 132:Suppl. 11012
    [Google Scholar]
  8. 8. 
    Costello CL, Gregory TK, Ali SA, Berdeja JG, Patel KK et al. 2019. Phase 2 study of the response and safety of P-Bcma-101 CAR-T cells in patients with relapsed/refractory (r/r) multiple myeloma (MM) (PRIME). Blood 134:Suppl. 13184
    [Google Scholar]
  9. 9. 
    Beatty GL, O'Hara MH, Lacey SF, Torigian DA, Nazimuddin F et al. 2018. Activity of mesothelin-specific chimeric antigen receptor T cells against pancreatic carcinoma metastases in a phase 1 trial. Gastroenterology 155:29–32
    [Google Scholar]
  10. 10. 
    Mueller KT, Waldron E, Grupp SA, Levine JE, Laetsch TW et al. 2018. Clinical pharmacology of tisagenlecleucel in B-cell acute lymphoblastic leukemia. Clin. Cancer Res. 24:6175–84
    [Google Scholar]
  11. 11. 
    Awasthi R, Pacaud L, Waldron E, Tam CS, Jager U et al. 2020. Tisagenlecleucel cellular kinetics, dose, and immunogenicity in relation to clinical factors in relapsed/refractory DLBCL. Blood Adv 4:560–72
    [Google Scholar]
  12. 12. 
    Morgan RA, Boyerinas B. 2016. Genetic modification of T cells. Biomedicines 4:9
    [Google Scholar]
  13. 13. 
    FDA (US Food Drug Adm.). 2019. Kymriah (tisagenlecleucel). Product information. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel
  14. 14. 
    FDA (US Food Drug Adm.). 2018. Yescarta (axicabtagene ciloleucel). Product information. https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel
  15. 15. 
    Zander R, Schauder D, Xin G, Nguyen C, Wu X et al. 2019. CD4+ T cell help is required for the formation of a cytolytic CD8+ T cell subset that protects against chronic infection and cancer. Immunity 51:1028–42.e4
    [Google Scholar]
  16. 16. 
    van de Berg PJ, van Leeuwen EM, ten Berge IJ, van Lier R 2008. Cytotoxic human CD4+ T cells. Curr. Opin. Immunol. 20:339–43
    [Google Scholar]
  17. 17. 
    Golubovskaya V, Wu L. 2016. Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers 8:36
    [Google Scholar]
  18. 18. 
    Fraietta JA, Nobles CL, Sammons MA, Lundh S, Carty SA et al. 2018. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558:307–12
    [Google Scholar]
  19. 19. 
    FDA (US Food Drug Adm.). 2017. FDA Briefing Document. Oncologic Drugs Advisory Committee Meeting. BLA 125646. Tisagenlecleucel. Novartis Pharmaceuticals Corporation. https://www.fda.gov/media/106081/download
  20. 20. 
    Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M et al. 2018. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24:563–71
    [Google Scholar]
  21. 21. 
    Cohen AD, Garfall AL, Stadtmauer EA, Melenhorst JJ, Lacey SF et al. 2019. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Investig. 129:2210–21
    [Google Scholar]
  22. 22. 
    Turtle CJ, Hanafi L-A, Berger C, Gooley TA, Cherian S et al. 2016. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Investig. 126:2123–38
    [Google Scholar]
  23. 23. 
    Turtle CJ, Hanafi L-A, Berger C, Hudecek M, Pender B et al. 2016. Immunotherapy of non-Hodgkin's lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells. Sci. Transl. Med. 8:355ra116
    [Google Scholar]
  24. 24. 
    Turtle CJ, Hay KA, Hanafi L-A, Li D, Cherian S et al. 2017. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of ibrutinib. J. Clin. Oncol. 35:3010–20
    [Google Scholar]
  25. 25. 
    Gardner RA, Finney O, Annesley C, Brakke H, Summers C et al. 2017. Intent-to-treat leukemia remission by CD19 CAR T cells of defined formulation and dose in children and young adults. Blood 129:3322–31
    [Google Scholar]
  26. 26. 
    Sommermeyer D, Hudecek M, Kosasih PL, Gogishvili T, Maloney DG et al. 2016. Chimeric antigen receptor-modified T cells derived from defined CD8+ and CD4+ subsets confer superior antitumor reactivity in vivo. Leukemia 30:492–500
    [Google Scholar]
  27. 27. 
    Brentjens RJ, Santos E, Nikhamin Y, Yeh R, Matsushita M et al. 2007. Genetically targeted T cells eradicate systemic acute lymphoblastic leukemia xenografts. Clin. Cancer Res. 13:5426–35
    [Google Scholar]
  28. 28. 
    Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK et al. 2009. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol. Ther. 17:1453–64
    [Google Scholar]
  29. 29. 
    Cheng Z, Wei R, Ma Q, Shi L, He F et al. 2018. In vivo expansion and antitumor activity of coinfused CD28- and 4-1BB-engineered CAR-T cells in patients with B cell leukemia. Mol. Ther. 26:976–85
    [Google Scholar]
  30. 30. 
    Mueller KT, Maude SL, Porter DL, Frey N, Wood P et al. 2017. Cellular kinetics of CTL019 in relapsed/refractory B-cell acute lymphoblastic leukemia and chronic lymphocytic leukemia. Blood 130:2317–25
    [Google Scholar]
  31. 31. 
    Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C et al. 2015. T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet 385:517–28
    [Google Scholar]
  32. 32. 
    Gattinoni L, Klebanoff CA, Restifo NP 2012. Paths to stemness: building the ultimate antitumour T cell. Nat. Rev. Cancer 12:671–84
    [Google Scholar]
  33. 33. 
    Kochenderfer JN, Somerville RPT, Lu T, Shi V, Bot A et al. 2017. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35:1803–13
    [Google Scholar]
  34. 34. 
    Dudley ME, Wunderlich JR, Yang JC, Sherry RM, Topalian SL et al. 2005. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23:2346–57
    [Google Scholar]
  35. 35. 
    Majzner RG, Mackall CL. 2019. Clinical lessons learned from the first leg of the CAR T cell journey. Nat. Med. 25:1341–55
    [Google Scholar]
  36. 36. 
    Brentjens RJ, Rivière I, Park JH, Davila ML, Wang X et al. 2011. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118:4817–28
    [Google Scholar]
  37. 37. 
    Xu J, Chen L-J, Yang S-S, Sun Y, Wu W et al. 2019. Exploratory trial of a biepitopic CAR T-targeting B cell maturation antigen in relapsed/refractory multiple myeloma. PNAS 116:9543–51
    [Google Scholar]
  38. 38. 
    Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P et al. 2019. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N. Engl. J. Med. 380:45–56
    [Google Scholar]
  39. 39. 
    Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M et al. 2018. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378:439–48
    [Google Scholar]
  40. 40. 
    Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM et al. 2014. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 371:1507–17
    [Google Scholar]
  41. 41. 
    Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR et al. 2017. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N. Engl. J. Med. 377:2545–54
    [Google Scholar]
  42. 42. 
    Porter DL, Hwang W-T, Frey NV, Lacey SF, Shaw PA et al. 2015. Chimeric antigen receptor T cells persist and induce sustained remissions in relapsed refractory chronic lymphocytic leukemia. Sci. Transl. Med. 7:303ra139
    [Google Scholar]
  43. 43. 
    Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis LJ et al. 2019. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 20:31–42
    [Google Scholar]
  44. 44. 
    Raje N, Berdeja J, Lin Y, Siegel D, Jagannath S et al. 2019. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380:1726–37
    [Google Scholar]
  45. 45. 
    Zhao W-H, Liu J, Wang B-Y, Chen Y-X, Cao X-M et al. 2018. A phase 1, open-label study of LCAR-B38M, a chimeric antigen receptor T cell therapy directed against B cell maturation antigen, in patients with relapsed or refractory multiple myeloma. J. Hematol. Oncol. 11:141
    [Google Scholar]
  46. 46. 
    Park JH, Rivière I, Gonen M, Wang X, Sénéchal B et al. 2018. Long-term follow-up of CD19 CAR therapy in acute lymphoblastic leukemia. N. Engl. J. Med. 378:449–59
    [Google Scholar]
  47. 47. 
    Irvine DJ, Purbhoo MA, Krogsgaard M, Davis MM 2002. Direct observation of ligand recognition by T cells. Nature 419:845–49
    [Google Scholar]
  48. 48. 
    Brudno JN, Maric I, Hartman SD, Rose JJ, Wang M et al. 2018. T cells genetically modified to express an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of poor-prognosis relapsed multiple myeloma. J. Clin. Oncol. 36:2267–80
    [Google Scholar]
  49. 49. 
    Finney OC, Brakke HM, Rawlings-Rhea S, Hicks R, Doolittle D et al. 2019. CD19 CAR T cell product and disease attributes predict leukemia remission durability. J. Clin. Investig. 129:2123–32
    [Google Scholar]
  50. 50. 
    Rossi J, Paczkowski P, Shen YW, Morse K, Flynn B et al. 2018. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132:804–14
    [Google Scholar]
  51. 51. 
    Singh N, Lee YG, Shestova O, Ravikumar P, Hayer KE et al. 2020. Impaired death receptor signaling in leukemia causes antigen-independent resistance by inducing CAR T cell dysfunction. Cancer Discov 10:4552–67
    [Google Scholar]
  52. 52. 
    Riegler LL, Jones GP, Lee DW 2019. Current approaches in the grading and management of cytokine release syndrome after chimeric antigen receptor T-cell therapy. Ther. Clin. Risk Manag. 15:323–35
    [Google Scholar]
  53. 53. 
    Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ et al. 2019. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol. Blood Marrow Transplant. 25:625–38
    [Google Scholar]
  54. 54. 
    Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB et al. 2017. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N. Engl. J. Med. 377:2531–44
    [Google Scholar]
  55. 55. 
    Hay KA, Hanafi L-A, Li D, Gust J, Liles WC et al. 2017. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood 130:2295–306
    [Google Scholar]
  56. 56. 
    Gardner RA, Ceppi F, Rivers J, Annesley C, Summers C et al. 2019. Preemptive mitigation of CD19 CAR T-cell cytokine release syndrome without attenuation of antileukemic efficacy. Blood 134:2149–58
    [Google Scholar]
  57. 57. 
    Ghorashian S, Kramer AM, Onuoha S, Wright G, Bartram J et al. 2019. Enhanced CAR T cell expansion and prolonged persistence in pediatric patients with ALL treated with a low-affinity CD19 CAR. Nat. Med. 25:1408–14
    [Google Scholar]
  58. 58. 
    Gust J, Hay KA, Hanafi L-A, Li D, Myerson D et al. 2017. Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–19
    [Google Scholar]
  59. 59. 
    Santomasso BD, Park JH, Salloum D, Rivière I, Flynn J et al. 2018. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov 8:958–71
    [Google Scholar]
  60. 60. 
    Bhoj VG, Arhontoulis D, Wertheim G, Capobianchi J, Callahan CA et al. 2016. Persistence of long-lived plasma cells and humoral immunity in individuals responding to CD19-directed CAR T-cell therapy. Blood 128:360–70
    [Google Scholar]
  61. 61. 
    Newman MJ, Benani DJ. 2016. A review of blinatumomab, a novel immunotherapy. J. Oncol. Pharm. Pract. 22:639–45
    [Google Scholar]
  62. 62. 
    Trivedi A, Stienen S, Zhu M, Li H, Yuraszeck T et al. 2017. Clinical pharmacology and translational aspects of bispecific antibodies. Clin. Transl. Sci. 10:147–62
    [Google Scholar]
  63. 63. 
    Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC et al. 2017. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N. Engl. J. Med. 376:836–47
    [Google Scholar]
  64. 64. 
    Slaney CY, Wang P, Darcy PK, Kershaw MH 2018. CARs versus BiTEs: a comparison between T cell-redirection strategies for cancer treatment. Cancer Discov 8:924–34
    [Google Scholar]
  65. 65. 
    Locke FL, Neelapu SS, Bartlett NL, Lekakis LJ, Jacobson CA et al. 2017. Preliminary results of prophylactic tocilizumab after axicabtageneciloleucel (axi-cel; KTE-C19) treatment for patients with refractory, aggressive non-Hodgkin lymphoma (NHL). Blood 130:Suppl. 11547
    [Google Scholar]
  66. 66. 
    Sterner RM, Sakemura R, Cox MJ, Yang N, Khadka RH et al. 2019. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood 133:697–709
    [Google Scholar]
  67. 67. 
    Giavridis T, van der Stegen SJC, Eyquem J, Hamieh M, Piersigilli A, Sadelain M 2018. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24:731–38
    [Google Scholar]
  68. 68. 
    Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO et al. 2015. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J. Clin. Oncol. 33:540–49
    [Google Scholar]
  69. 69. 
    Locke FL, Neelapu SS, Bartlett NL, Siddiqi T, Chavez JC et al. 2017. Phase 1 results of ZUMA-1: a multicenter study of KTE-C19 anti-CD19 CAR T cell therapy in refractory aggressive lymphoma. Mol. Ther. 25:285–95
    [Google Scholar]
  70. 70. 
    Geyer MB, Rivière I, Sénéchal B, Wang X, Wang Y et al. 2018. Autologous CD19-targeted CAR T cells in patients with residual CLL following initial purine analog-based therapy. Mol. Ther. 26:1896–905
    [Google Scholar]
  71. 71. 
    Ali SA, Shi V, Maric I, Wang M, Stroncek DF et al. 2016. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128:1688–700
    [Google Scholar]
  72. 72. 
    Bristol-Myers Squibb. 2019. Bristol-Myers Squibb and bluebird bio announce positive top-line results from the pivotal phase 2 KarMMa study of Ide-cel in relapsed and refractory multiple myeloma Press Release, Dec. 6. https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-and-bluebird-bio-announce-positive-top-li
  73. 73. 
    Bristol-Myers Squibb. 2019. bluebird bio and Bristol-Myers Squibb present updated data from ongoing phase 1 study of BCMA-targeted CAR T cell therapy bb21217 in relapsed/refractory multiple myeloma at 61st ASH annual meeting and exposition Press Release, Dec. 9. https://news.bms.com/press-release/corporatefinancial-news/bluebird-bio-and-bristol-myers-squibb-present-updated-data-ong
  74. 74. 
    Madduri D, Usmani SZ, Jagannath S, Singh I, Zudaire E et al. 2019. Results from CARTITUDE-1: a phase 1b/2 study of JNJ-4528, a CAR-T cell therapy directed against B-cell maturation antigen (BCMA), in patients with relapsed and/or refractory multiple myeloma (R/R MM). Blood 134:Suppl. 1577
    [Google Scholar]
  75. 75. 
    Zudaire E, Madduri D, Usmani SZ, Jakubowiak A, Berdeja JG et al. 2019. Translational analysis from CARTITUDE-1, an ongoing phase 1b/2 study of JNJ-4528 BCMA-targeted CAR-T cell therapy in relapsed and/or refractory multiple myeloma (R/R MM), indicates preferential expansion of CD8+ T cell central memory cell subset. Blood 134:Suppl. 1928
    [Google Scholar]
  76. 76. 
    Wang B-Y, Zhao W-H, Liu J, Chen Y-X, Cao X-M et al. 2019. Long-term follow-up of a phase 1, first-in-human open-label study of LCAR-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA), in patients (pts) with relapsed/refractory multiple myeloma (RRMM). Blood 134:Suppl. 1579
    [Google Scholar]
  77. 77. 
    Chen L, Xu J, Fu W Sr, Jin S, Yang S et al. 2019. Updated phase 1 results of a first-in-human open-label study of Lcar-B38M, a structurally differentiated chimeric antigen receptor T (CAR-T) cell therapy targeting B-cell maturation antigen (BCMA). Blood 134:Suppl. 11858
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-031720-102211
Loading
/content/journals/10.1146/annurev-pharmtox-031720-102211
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error