1932

Abstract

Genetic material is constantly subjected to genotoxic insults and is critically dependent on DNA repair. Genome maintenance mechanisms differ in somatic and germ cells as the soma only requires maintenance during an individual's lifespan, while the germline indefinitely perpetuates its genetic information. DNA lesions are recognized and repaired by mechanistically highly diverse repair machineries. The DNA damage response impinges on a vast array of homeostatic processes and can ultimately result in cell fate changes such as apoptosis or cellular senescence. DNA damage causally contributes to the aging process and aging-associated diseases, most prominently cancer. By causing mutations, DNA damage in germ cells can lead to genetic diseases and impact the evolutionary trajectory of a species. The mechanisms ensuring tight control of germline DNA repair could be highly instructive in defining strategies for improved somatic DNA repair. They may provide future interventions to maintain health and prevent disease during aging.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pathmechdis-051122-093128
2024-01-24
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/pathol/19/1/annurev-pathmechdis-051122-093128.html?itemId=/content/journals/10.1146/annurev-pathmechdis-051122-093128&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Milholland B, Dong X, Zhang L, Hao X, Suh Y, Vijg J. 2017. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8:115183
    [Google Scholar]
  2. 2.
    Cagan A, Baez-Ortega A, Brzozowska N, Abascal F, Coorens THH et al. 2022. Somatic mutation rates scale with lifespan across mammals. Nature 604:790651724
    [Google Scholar]
  3. 3.
    Mulderrig L, Garaycoechea JI, Tuong ZK, Millington CL, Dingler FA et al. 2021. Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 600:15863
    [Google Scholar]
  4. 4.
    Weickert P, Stingele J. 2022. DNA–protein crosslinks and their resolution. Annu. Rev. Biochem. 91:15781
    [Google Scholar]
  5. 5.
    Umansky C, Morellato AE, Rieckher M, Scheidegger MA, Martinefski MR et al. 2022. Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nat. Commun. 13:1745
    [Google Scholar]
  6. 6.
    Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC. 2004. Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat. Cell Biol. 6:216870
    [Google Scholar]
  7. 7.
    Wang J, Clauson CL, Robbins PD, Niedernhofer LJ, Wang Y. 2012. The oxidative DNA lesions 8,5′-cyclopurines accumulate with aging in a tissue-specific manner. Aging Cell 11:471416
    [Google Scholar]
  8. 8.
    Shaposhnikov M, Proshkina E, Shilova L, Zhavoronkov A, Moskalev A. 2015. Lifespan and stress resistance in Drosophila with overexpressed DNA repair genes. Sci. Rep. 5:115299
    [Google Scholar]
  9. 9.
    Tian X, Firsanov D, Zhang Z, Cheng Y, Luo L et al. 2019. SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell 177:362238.e22
    [Google Scholar]
  10. 10.
    Torgovnick A, Schumacher B. 2015. DNA repair mechanisms in cancer development and therapy. Front. Genet. 6:157
    [Google Scholar]
  11. 11.
    Hoch NC, Hanzlikova H, Rulten SL, Tétreault M, Komulainen E et al. 2017. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541:76358791
    [Google Scholar]
  12. 12.
    Fang EF, Scheibye-Knudsen M, Brace LE, Kassahun H, SenGupta T et al. 2014. Defective mitophagy in XPA via PARP-1 hyperactivation and NAD+/SIRT1 reduction. Cell 157:488296
    [Google Scholar]
  13. 13.
    Kerr JB, Hutt KJ, Michalak EM, Cook M, Vandenberg CJ et al. 2012. DNA damage-induced primordial follicle oocyte apoptosis and loss of fertility require TAp63-mediated induction of Puma and Noxa. Mol. Cell 48:334352
    [Google Scholar]
  14. 14.
    Kong A, Frigge ML, Masson G, Besenbacher S, Sulem P et al. 2012. Rate of de novo mutations and the importance of father's age to disease risk. Nature 488:741247175
    [Google Scholar]
  15. 15.
    Kaplanis J, Ide B, Sanghvi R, Neville M, Danecek P et al. 2022. Genetic and chemotherapeutic influences on germline hypermutation. Nature 605:79105038
    [Google Scholar]
  16. 16.
    Wang S, Meyer DH, Schumacher B. 2023. Inheritance of paternal DNA damage by histone-mediated repair restriction. Nature 613:794336574
    [Google Scholar]
  17. 17.
    Dou Y, Gold HD, Luquette LJ, Park PJ. 2018. Detecting somatic mutations in normal cells. Trends Genet. 34:754557
    [Google Scholar]
  18. 18.
    Vijg J, Dong X. 2020. Pathogenic mechanisms of somatic mutation and genome mosaicism in aging. Cell 182:11223
    [Google Scholar]
  19. 19.
    Brazhnik K, Sun S, Alani O, Kinkhabwala M, Wolkoff AW et al. Single-cell analysis reveals different age-related somatic mutation profiles between stem and differentiated cells in human liver. Sci. Adv. 6:5eaax2659
    [Google Scholar]
  20. 20.
    Moore L, Cagan A, Coorens THH, Neville MDC, Sanghvi R et al. 2021. The mutational landscape of human somatic and germline cells. Nature 597:787638186
    [Google Scholar]
  21. 21.
    Zhang L, Dong X, Lee M, Maslov AY, Wang T, Vijg J. 2019. Single-cell whole-genome sequencing reveals the functional landscape of somatic mutations in B lymphocytes across the human lifespan. PNAS 116:18901419
    [Google Scholar]
  22. 22.
    Zhang L, Vijg J. 2018. Somatic mutagenesis in mammals and its implications for human disease and aging. Annu. Rev. Genet. 52:397419
    [Google Scholar]
  23. 23.
    Martincorena I, Raine KM, Gerstung M, Dawson KJ, Haase K et al. 2017. Universal patterns of selection in cancer and somatic tissues. Cell 171:5102941.e21
    [Google Scholar]
  24. 24.
    Lee-Six H, Øbro NF, Shepherd MS, Grossmann S, Dawson K et al. 2018. Population dynamics of normal human blood inferred from somatic mutations. Nature 561:772447378
    [Google Scholar]
  25. 25.
    Martincorena I, Roshan A, Gerstung M, Ellis P, Van Loo P et al. 2015. High burden and pervasive positive selection of somatic mutations in normal human skin. Science 348:623788086
    [Google Scholar]
  26. 26.
    Martincorena I, Fowler JC, Wabik A, Lawson ARJ, Abascal F et al. 2018. Somatic mutant clones colonize the human esophagus with age. Science 362:641791117
    [Google Scholar]
  27. 27.
    Robinson PS, Coorens THH, Palles C, Mitchell E, Abascal F et al. 2021. Increased somatic mutation burdens in normal human cells due to defective DNA polymerases. Nat. Genet. 53:10143442
    [Google Scholar]
  28. 28.
    Robinson PS, Thomas LE, Abascal F, Jung H, Harvey LMR et al. 2022. Inherited MUTYH mutations cause elevated somatic mutation rates and distinctive mutational signatures in normal human cells. Nat. Commun. 13:13949
    [Google Scholar]
  29. 29.
    Sinicrope FA. 2018. Lynch syndrome–associated colorectal cancer. N. Engl. J. Med. 379:876473
    [Google Scholar]
  30. 30.
    Costantino I, Nicodemus J, Chun J. 2021. Genomic mosaicism formed by somatic variation in the aging and diseased brain. Genes 12:71071
    [Google Scholar]
  31. 31.
    Martínez-Jiménez F, Muiños F, Sentís I, Deu-Pons J, Reyes-Salazar I et al. 2020. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20:1055572
    [Google Scholar]
  32. 32.
    Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV et al. 2014. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371:26248898
    [Google Scholar]
  33. 33.
    Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA et al. 2014. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N. Engl. J. Med. 371:26247787
    [Google Scholar]
  34. 34.
    Ng SWK, Rouhani FJ, Brunner SF, Brzozowska N, Aitken SJ et al. 2021. Convergent somatic mutations in metabolism genes in chronic liver disease. Nature 598:788147378
    [Google Scholar]
  35. 35.
    Ren AA, Snellings DA, Su YS, Hong CC, Castro M et al. 2021. PIK3CA and CCM mutations fuel cavernomas through a cancer-like mechanism. Nature 594:786227176
    [Google Scholar]
  36. 36.
    Zhang L, Dong X, Tian X, Lee M, Ablaeva J et al. 2021. Maintenance of genome sequence integrity in long- and short-lived rodent species. Sci. Adv. 7:44eabj3284
    [Google Scholar]
  37. 37.
    Evdokimov A, Kutuzov M, Petruseva I, Lukjanchikova N, Kashina E et al. 2018. Naked mole rat cells display more efficient excision repair than mouse cells. Aging 10:6145473
    [Google Scholar]
  38. 38.
    Niedernhofer LJ, Gurkar AU, Wang Y, Vijg J, Hoeijmakers JHJ, Robbins PD. 2018. Nuclear genomic instability and aging. Annu. Rev. Biochem. 87:295322
    [Google Scholar]
  39. 39.
    Ferrucci L, Gonzalez-Freire M, Fabbri E, Simonsick E, Tanaka T et al. 2020. Measuring biological aging in humans: a quest. Aging Cell 19:2e13080
    [Google Scholar]
  40. 40.
    Qian M, Liu Z, Peng L, Tang X, Meng F et al. 2018. Boosting ATM activity alleviates aging and extends lifespan in a mouse model of progeria. eLife 7:e34836
    [Google Scholar]
  41. 41.
    Nygaard HB, Erson-Omay EZ, Wu X, Kent BA, Bernales CQ et al. 2019. Whole-exome sequencing of an exceptional longevity cohort. J. Gerontol. A Biol. Sci. Med. Sci. 74:9138690
    [Google Scholar]
  42. 42.
    Shen S, Li C, Xiao L, Wang X, Lv H et al. 2020. Whole-genome sequencing of Chinese centenarians reveals important genetic variants in aging WGS of centenarian for genetic analysis of aging. Hum. Genom. 14:123
    [Google Scholar]
  43. 43.
    Abascal F, Harvey LMR, Mitchell E, Lawson ARJ, Lensing SV et al. 2021. Somatic mutation landscapes at single-molecule resolution. Nature 593:785940510
    [Google Scholar]
  44. 44.
    Blokzijl F, de Ligt J, Jager M, Sasselli V, Roerink S et al. 2016. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538:762426064
    [Google Scholar]
  45. 45.
    Schumacher B, Pothof J, Vijg J, Hoeijmakers JHJ. 2021. The central role of DNA damage in the ageing process. Nature 592:7856695703
    [Google Scholar]
  46. 46.
    Vermeij W, Dollé M, Reiling E, Jaarsma D, Payan-Gomez C et al. 2016. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice. Nature 537:762042731
    [Google Scholar]
  47. 47.
    Gyenis A, Chang J, Demmers JJPG, Bruens ST, Barnhoorn S et al. 2023. Genome-wide RNA polymerase stalling shapes the transcriptome during aging. Nat. Genet. 55:26879
    [Google Scholar]
  48. 48.
    McNeely T, Leone M, Yanai H, Beerman I. 2020. DNA damage in aging, the stem cell perspective. Hum. Genet. 139:330931
    [Google Scholar]
  49. 49.
    Flach J, Bakker ST, Mohrin M, Conroy PC, Pietras EM et al. 2014. Replication stress is a potent driver of functional decline in ageing haematopoietic stem cells. Nature 512:7513198202
    [Google Scholar]
  50. 50.
    Chow JP, Poon RYC. 2010. DNA damage and polyploidization. Adv. Exp. Med. Biol. 676:5771
    [Google Scholar]
  51. 51.
    Rogakou EP, Boon C, Redon C, Bonner WM. 1999. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 146:590516
    [Google Scholar]
  52. 52.
    Soto-Palma C, Niedernhofer LJ, Faulk CD, Dong X. 2022. Epigenetics, DNA damage, and aging. J. Clin. Investig. 132:16e158446
    [Google Scholar]
  53. 53.
    Kreiling JA, Tamamori-Adachi M, Sexton AN, Jeyapalan JC, Munoz-Najar U et al. 2011. Age-associated increase in heterochromatic marks in murine and primate tissues. Aging Cell 10:2292304
    [Google Scholar]
  54. 54.
    Stefanelli G, Azam AB, Walters BJ, Brimble MA, Gettens CP et al. 2018. Learning and age-related changes in genome-wide H2A.Z binding in the mouse hippocampus. Cell Rep. 22:5112431
    [Google Scholar]
  55. 55.
    Wang S, Meyer DH, Schumacher B. 2020. H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nat. Struct. Mol. Biol. 27:12116577
    [Google Scholar]
  56. 56.
    Morano A, Angrisano T, Russo G, Landi R, Pezone A et al. 2013. Targeted DNA methylation by homology-directed repair in mammalian cells. Transcription reshapes methylation on the repaired gene. Nucleic Acids Res. 42:280421
    [Google Scholar]
  57. 57.
    Russo G, Landi R, Pezone A, Morano A, Zuchegna C et al. 2016. DNA damage and repair modify DNA methylation and chromatin domain of the targeted locus: mechanism of allele methylation polymorphism. Sci. Rep. 6:133222
    [Google Scholar]
  58. 58.
    Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. 2019. The role of DNA methylation in epigenetics of aging. Pharmacol. Therapeut. 195:17285
    [Google Scholar]
  59. 59.
    Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA et al. 2006. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:7096101114
    [Google Scholar]
  60. 60.
    Martinez-Jimenez CP, Eling N, Chen H-C, Vallejos CA, Kolodziejczyk AA et al. 2017. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science 355:6332143336
    [Google Scholar]
  61. 61.
    Schumacher B, Meyer D. 2023. Accurate aging clocks based on accumulating stochastic variation. Res. Sq. https://doi.org/10.21203/rs.3.rs-2351315/v1
    [Google Scholar]
  62. 62.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. 2023. Hallmarks of aging: an expanding universe. Cell 186:224378
    [Google Scholar]
  63. 63.
    Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. 2016. Nuclear DNA damage signalling to mitochondria in ageing. Nat. Rev. Mol. Cell Biol. 17:530821
    [Google Scholar]
  64. 64.
    Lee J-H, Paull TT. 2020. Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 32:101511
    [Google Scholar]
  65. 65.
    Scheibye-Knudsen M, Scheibye-Alsing K, Canugovi C, Croteau DL, Bohr VA. 2013. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging. Aging 5:3192208
    [Google Scholar]
  66. 66.
    Ray Chaudhuri A, Nussenzweig A. 2017. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18:1061021
    [Google Scholar]
  67. 67.
    Demin AA, Hirota K, Tsuda M, Adamowicz M, Hailstone R et al. 2021. XRCC1 prevents toxic PARP1 trapping during DNA base excision repair. Mol. Cell 81:14301830
    [Google Scholar]
  68. 68.
    Covarrubias AJ, Perrone R, Grozio A, Verdin E. 2021. NAD+ metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22:211941
    [Google Scholar]
  69. 69.
    Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D et al. 2013. The NAD+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:243041
    [Google Scholar]
  70. 70.
    Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J et al. 2008. SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:590718
    [Google Scholar]
  71. 71.
    Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P et al. 2016. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 35:141488503
    [Google Scholar]
  72. 72.
    Fan W, Luo J. 2010. SIRT1 regulates UV-induced DNA repair through deacetylating XPA. Mol. Cell 39:224758
    [Google Scholar]
  73. 73.
    Huang P, Chen G, Jin W, Mao K, Wan H, He Y. 2022. Molecular mechanisms of parthanatos and its role in diverse diseases. Int. J. Mol. Sci. 23:137292
    [Google Scholar]
  74. 74.
    Martire S, Mosca L, d'Erme M. 2015. PARP-1 involvement in neurodegeneration: a focus on Alzheimer's and Parkinson's diseases. Mech. Ageing Dev. 146:5364
    [Google Scholar]
  75. 75.
    Bai P, Cantó C, Oudart H, Brunyánszki A, Cen Y et al. 2011. PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell Metab. 13:446168
    [Google Scholar]
  76. 76.
    Pirinen E, Cantó C, Jo YS, Morato L, Zhang H et al. 2014. Pharmacological inhibition of poly(ADP-ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab. 19:6103441
    [Google Scholar]
  77. 77.
    Lee J-H, Ryu SW, Ender NA, Paull TT. 2021. Poly-ADP-ribosylation drives loss of protein homeostasis in ATM and Mre11 deficiency. Mol. Cell 81:7151533
    [Google Scholar]
  78. 78.
    Lee J-H, Mand MR, Kao C-H, Zhou Y, Ryu SW et al. 2018. ATM directs DNA damage responses and proteostasis via genetically separable pathways. Sci. Signal. 11:512eaan5598
    [Google Scholar]
  79. 79.
    Talaei F, Van Praag V, Henning R. 2013. Hydrogen sulfide restores a normal morphological phenotype in Werner syndrome fibroblasts, attenuates oxidative damage and modulates mTOR pathway. Pharmacol. Res. 74:3444
    [Google Scholar]
  80. 80.
    de Sousa Leal AM, de Azevedo Medeiros LB, Muñoz-Cadavid CO, de Paula Oliveira R, de Souza Timóteo AR et al. 2020. XPA deficiency affects the ubiquitin-proteasome system function. DNA Repair 94:102937
    [Google Scholar]
  81. 81.
    Kelmer Sacramento E, Kirkpatrick JM, Mazzetto M, Baumgart M, Bartolome A et al. 2020. Reduced proteasome activity in the aging brain results in ribosome stoichiometry loss and aggregation. Mol. Syst. Biol. 16:6e9596
    [Google Scholar]
  82. 82.
    Paull TT. 2021. DNA damage and regulation of protein homeostasis. DNA Repair 105:103155
    [Google Scholar]
  83. 83.
    Moiseeva TN, Bottrill A, Melino G, Barlev NA. 2013. DNA damage-induced ubiquitylation of proteasome controls its proteolytic activity. Oncotarget 4:9133848
    [Google Scholar]
  84. 84.
    Kee Y, Huang TT. 2016. Role of deubiquitinating enzymes in DNA repair. Mol. Cell. Biol. 36:452444
    [Google Scholar]
  85. 85.
    Arczewska KD, Tomazella GG, Lindvall JM, Kassahun H, Maglioni S et al. 2013. Active transcriptomic and proteomic reprogramming in the C. elegans nucleotide excision repair mutant xpa-1. Nucleic Acids Res. 41:10536881
    [Google Scholar]
  86. 86.
    Sunderland P, Augustyniak J, Lenart J, Bużańska L, Carlessi L et al. 2020. ATM-deficient neural precursors develop senescence phenotype with disturbances in autophagy. Mech. Ageing Dev. 190:111296
    [Google Scholar]
  87. 87.
    Liu M, Zeng T, Zhang X, Liu C, Wu Z et al. 2018. ATR/Chk1 signaling induces autophagy through sumoylated RhoB-mediated lysosomal translocation of TSC2 after DNA damage. Nat. Commun. 9:14139
    [Google Scholar]
  88. 88.
    Eapen VV, Waterman DP, Bernard A, Schiffmann N, Sayas E et al. 2017. A pathway of targeted autophagy is induced by DNA damage in budding yeast. PNAS 114:7E115867
    [Google Scholar]
  89. 89.
    Cheng A, Tse K-H, Chow H-M, Gan Y, Song X et al. 2021. ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 17:819982010
    [Google Scholar]
  90. 90.
    Juretschke T, Beli P. 2021. Causes and consequences of DNA damage-induced autophagy. Matrix Biol. 100:3953
    [Google Scholar]
  91. 91.
    Nagata S. 2018. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 36:489517
    [Google Scholar]
  92. 92.
    Olivetti G, Melissari M, Capasso JM, Anversa P. 1991. Cardiomyopathy of the aging human heart. Myocyte loss and reactive cellular hypertrophy. Circ. Res. 68:6156068
    [Google Scholar]
  93. 93.
    Wang X, Bonventre JV, Parrish AR. 2014. The aging kidney: increased susceptibility to nephrotoxicity. Int. J. Mol. Sci. 15:91535876
    [Google Scholar]
  94. 94.
    Dirks A, Leeuwenburgh C. 2002. Apoptosis in skeletal muscle with aging. Am. J. Physiol.Regul. Integr. Comp. Physiol. 282:2R51927
    [Google Scholar]
  95. 95.
    Sainz RM, Mayo JC, Reiter R, Tan D, Rodriguez C. 2003. Apoptosis in primary lymphoid organs with aging. Microsc. Res. Tech. 62:652439
    [Google Scholar]
  96. 96.
    Gorgoulis V, Adams PD, Alimonti A, Bennett DC, Bischof O et al. 2019. Cellular senescence: defining a path forward. Cell 179:481327
    [Google Scholar]
  97. 97.
    Jeyapalan JC, Ferreira M, Sedivy JM, Herbig U. 2007. Accumulation of senescent cells in mitotic tissue of aging primates. Mech. Ageing Dev. 128:13644
    [Google Scholar]
  98. 98.
    Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C et al. 2009. Expression of p16INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell 8:443948
    [Google Scholar]
  99. 99.
    Wu C-M, Zheng L, Wang Q, Hu Y-W. 2021. The emerging role of cell senescence in atherosclerosis. Clin. Chem. Lab. Med. 59:12738
    [Google Scholar]
  100. 100.
    Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z et al. 2018. Senescence-associated reprogramming promotes cancer stemness. Nature 553:768696100
    [Google Scholar]
  101. 101.
    Kritsilis M, Rizou SV, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. 2018. Ageing, cellular senescence and neurodegenerative disease. Int. J. Mol. Sci. 19:102937
    [Google Scholar]
  102. 102.
    Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D et al. 2012. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat. Cell Biol. 14:435565
    [Google Scholar]
  103. 103.
    Nakamura AJ, Chiang YJ, Hathcock KS, Horikawa I, Sedelnikova OA et al. 2008. Both telomeric and non-telomeric DNA damage are determinants of mammalian cellular senescence. Epigenet. Chromatin 1:16
    [Google Scholar]
  104. 104.
    Hewitt G, Jurk D, Marques FD, Correia-Melo C, Hardy T et al. 2012. Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence. Nat. Commun. 3:1708
    [Google Scholar]
  105. 105.
    Rodier F, Muñoz DP, Teachenor R, Chu V, Le O et al. 2011. DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion. J. Cell Sci. 124:16881
    [Google Scholar]
  106. 106.
    Fumagalli M, Rossiello F, Mondello C, d'Adda di Fagagna F. 2014. Stable cellular senescence is associated with persistent DDR activation. PLOS ONE 9:10e110969
    [Google Scholar]
  107. 107.
    Zhuang Y, Lyga J. 2014. Inflammaging in skin and other tissues—the roles of complement system and macrophage. Inflamm. Allergy Drug Targets 13:315361
    [Google Scholar]
  108. 108.
    Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT et al. 2017. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood J. Am. Soc. Hematol. 130:674252
    [Google Scholar]
  109. 109.
    Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. 2007. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:714572529
    [Google Scholar]
  110. 110.
    Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ. 2014. Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15:13750
    [Google Scholar]
  111. 111.
    Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T et al. 2007. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:714568690
    [Google Scholar]
  112. 112.
    Prasher JM, Lalai AS, Heijmans-Antonissen C, Ploemacher RE, Hoeijmakers JHJ et al. 2005. Reduced hematopoietic reserves in DNA interstrand crosslink repair-deficient Ercc1−/− mice. EMBO J. 24:486171
    [Google Scholar]
  113. 113.
    Chen Q, Liu K, Robinson AR, Clauson CL, Blair HC et al. 2013. DNA damage drives accelerated bone aging via an NF-κB–dependent mechanism. J. Bone Miner. Res. 28:5121428
    [Google Scholar]
  114. 114.
    Lodato MA, Rodin RE, Bohrson CL, Coulter ME, Barton AR et al. 2018. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359:637555559
    [Google Scholar]
  115. 115.
    Dollé MET, Snyder WK, Dunson DB, Vijg J. 2002. Mutational fingerprints of aging. Nucleic Acids Res. 30:254549
    [Google Scholar]
  116. 116.
    Rieckher M, Garinis GA, Schumacher B. 2021. Molecular pathology of rare progeroid diseases. Trends Mol. Med. 27:990722
    [Google Scholar]
  117. 117.
    Tiwari V, Wilson DM. 2019. DNA damage and associated DNA repair defects in disease and premature aging. Am. J. Hum. Genet. 105:223757
    [Google Scholar]
  118. 118.
    Shiloh Y. 2020. The cerebellar degeneration in ataxia-telangiectasia: a case for genome instability. DNA Repair 95:102950
    [Google Scholar]
  119. 119.
    Terabayashi T, Hanada K. 2018. Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol. Toxicol. 34:533750
    [Google Scholar]
  120. 120.
    de Renty C, Ellis NA. 2017. Bloom's syndrome: Why not premature aging?: A comparison of the BLM and WRN helicases. Ageing Res. Rev. 33:3651
    [Google Scholar]
  121. 121.
    Kaur E, Agrawal R, Sengupta S. 2021. Functions of BLM helicase in cells: Is it acting like a double-edged sword?. Front. Genet. 12:634789
    [Google Scholar]
  122. 122.
    Johnson MH, Everitt BJ. 2000. Essential Reproduction Hoboken, NJ: Wiley-Blackwell. , 5th ed..
  123. 123.
    Dym M. 1983. The male reproductive system. Histology: Cell and Tissue Biology L Weiss 10001053. New York: Elsevier Biomedical. , 5th ed..
    [Google Scholar]
  124. 124.
    Peschon JJ, Behringer RR, Brinster RL, Palmiter RD. 1987. Spermatid-specific expression of protamine 1 in transgenic mice. PNAS 84:15531619
    [Google Scholar]
  125. 125.
    Suh E-K, Yang A, Kettenbach A, Bamberger C, Michaelis AH et al. 2006. p63 protects the female germ line during meiotic arrest. Nature 444:711962428
    [Google Scholar]
  126. 126.
    Marangos P, Carroll J. 2012. Oocytes progress beyond prophase in the presence of DNA damage. Curr. Biol. 22:1198994
    [Google Scholar]
  127. 127.
    Collins JK, Lane SI, Merriman JA, Jones KT. 2015. DNA damage induces a meiotic arrest in mouse oocytes mediated by the spindle assembly checkpoint. Nat. Commun. 6:18553
    [Google Scholar]
  128. 128.
    Pan H, O'Brien MJ, Wigglesworth K, Eppig JJ, Schultz RM. 2005. Transcript profiling during mouse oocyte development and the effect of gonadotropin priming and development in vitro. Dev. Biol. 286:2493506
    [Google Scholar]
  129. 129.
    Kerr JB, Brogan L, Myers M, Hutt KJ, Mladenovska T et al. 2012. The primordial follicle reserve is not renewed after chemical or γ-irradiation mediated depletion. Reproduction 143:446976
    [Google Scholar]
  130. 130.
    Tatone C, Amicarelli F, Carbone MC, Monteleone P, Caserta D et al. 2008. Cellular and molecular aspects of ovarian follicle ageing. Hum. Reprod. Update 14:213142
    [Google Scholar]
  131. 131.
    Lee C, Leem J, Oh JS. 2023. Selective utilization of non-homologous end-joining and homologous recombination for DNA repair during meiotic maturation in mouse oocytes. Cell Proliferation 56:4e13384
    [Google Scholar]
  132. 132.
    Stringer JM, Winship A, Zerafa N, Wakefield M, Hutt K. 2020. Oocytes can efficiently repair DNA double-strand breaks to restore genetic integrity and protect offspring health. PNAS 117:211151322
    [Google Scholar]
  133. 133.
    Kujjo LL, Laine T, Pereira RJG, Kagawa W, Kurumizaka H et al. 2010. Enhancing survival of mouse oocytes following chemotherapy or aging by targeting Bax and Rad51. PLOS ONE 5:2e9204
    [Google Scholar]
  134. 134.
    Martin JH, Bromfield EG, Aitken RJ, Lord T, Nixon B. 2018. Double strand break DNA repair occurs via non-homologous end-joining in mouse MII oocytes. Sci. Rep. 8:19685
    [Google Scholar]
  135. 135.
    Yang F, Baumann C, De La Fuente R. 2009. Persistence of histone H2AX phosphorylation after meiotic chromosome synapsis and abnormal centromere cohesion in poly (ADP-ribose) polymerase (Parp-1) null oocytes. Dev. Biol. 331:232638
    [Google Scholar]
  136. 136.
    Hua K, Wang L, Sun J, Zhou N, Zhang Y et al. 2020. Impairment of Pol β-related DNA base-excision repair leads to ovarian aging in mice. Aging 12:242520728
    [Google Scholar]
  137. 137.
    Edelmann W, Cohen PE, Kane M, Lau K, Morrow B et al. 1996. Meiotic pachytene arrest in MLH1-deficient mice. Cell 85:7112534
    [Google Scholar]
  138. 138.
    De Boer J, Andressoo JO, De Wit J, Huijmans J, Beems RB et al. 2002. Premature aging in mice deficient in DNA repair and transcription. Science 296:5571127679
    [Google Scholar]
  139. 139.
    Te Velde ER, Pearson PL. 2002. The variability of female reproductive ageing. Hum. Reprod. Update 8:214154
    [Google Scholar]
  140. 140.
    Kvåle G. 1992. Reproductive factors in breast cancer epidemiology. Acta Oncol. 31:218794
    [Google Scholar]
  141. 141.
    Paganini-Hill A, Atchison KA, Gornbein JA, Nattiv A, Service SK, White SC. 2005. Menstrual and reproductive factors and fracture risk: the Leisure World Cohort Study. J. Womens Health 14:980819
    [Google Scholar]
  142. 142.
    Cui R, Iso H, Toyoshima H, Date C, Yamamoto A et al. 2006. Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J. Epidemiol. 16:517784
    [Google Scholar]
  143. 143.
    Morris DH, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ. 2011. Familial concordance for age at natural menopause: results from the Breakthrough Generations Study. Menopause 18:995661
    [Google Scholar]
  144. 144.
    Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE et al. 2021. Genetic insights into biological mechanisms governing human ovarian ageing. Nature 596:787239397
    [Google Scholar]
  145. 145.
    Stolk L, Zhai G, van Meurs JB, Verbiest MM, Visser JA et al. 2009. Loci at chromosomes 13, 19 and 20 influence age at natural menopause. Nat. Genet. 41:664547
    [Google Scholar]
  146. 146.
    He C, Kraft P, Chen C, Buring JE, Paré G et al. 2009. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nat. Genet. 41:672428
    [Google Scholar]
  147. 147.
    Tye BK. 2000. Insights into DNA replication from the third domain of life. PNAS 97:62399401
    [Google Scholar]
  148. 148.
    Park J, Long DT, Lee KY, Abbas T, Shibata E et al. 2013. The MCM8-MCM9 complex promotes RAD51 recruitment at DNA damage sites to facilitate homologous recombination. Mol. Cell. Biol. 33:8163244
    [Google Scholar]
  149. 149.
    AlAsiri S, Basit S, Wood-Trageser MA, Yatsenko SA, Jeffries EP et al. 2015. Exome sequencing reveals MCM8 mutation underlies ovarian failure and chromosomal instability. J. Clin. Investig. 125:125862
    [Google Scholar]
  150. 150.
    Futreal PA, Liu Q, Shattuck-Eidens D, Cochran C, Harshman K et al. 1994. BRCA1 mutations in primary breast and ovarian carcinomas. Science 266:518212022
    [Google Scholar]
  151. 151.
    Day FR, Ruth KS, Thompson DJ, Lunetta KL, Pervjakova N et al. 2015. Large-scale genomic analyses link reproductive aging to hypothalamic signaling, breast cancer susceptibility and BRCA1-mediated DNA repair. Nat. Genet. 47:111294303
    [Google Scholar]
  152. 152.
    Perry JRB, Hsu Y-H, Chasman DI, Johnson AD, Elks C et al. 2014. DNA mismatch repair gene MSH6 implicated in determining age at natural menopause. Hum. Mol. Genet. 23:9249097
    [Google Scholar]
  153. 153.
    Stankovic S, Shekari S, Huang QQ, Gardner EJ, Owens NDL et al. 2022. Genetic susceptibility to earlier ovarian ageing increases de novo mutation rate in offspring. medRxiv 2022.06.23.22276698. https://doi.org/10.1101/2022.06.23.22276698
  154. 154.
    Nagaoka SI, Hassold TJ, Hunt PA. 2012. Human aneuploidy: mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 13:7493504
    [Google Scholar]
  155. 155.
    Titus S, Li F, Stobezki R, Akula K, Unsal E et al. 2013. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans. Sci. Transl. Med. 5:172172ra21
    [Google Scholar]
  156. 156.
    Zhang D, Zhang X, Zeng M, Yuan J, Liu M et al. 2015. Increased DNA damage and repair deficiency in granulosa cells are associated with ovarian aging in rhesus monkey. J. Assist. Reprod. Genet. 32:7106978
    [Google Scholar]
  157. 157.
    Oktay K, Kim JY, Barad D, Babayev SN. 2010. Association of BRCA1 mutations with occult primary ovarian insufficiency: a possible explanation for the link between infertility and breast/ovarian cancer risks. J. Clin. Oncol. 28:224044
    [Google Scholar]
  158. 158.
    Weinberg-Shukron A, Rachmiel M, Renbaum P, Gulsuner S, Walsh T et al. 2018. Essential role of BRCA2 in ovarian development and function. N. Engl. J. Med. 379:11104249
    [Google Scholar]
  159. 159.
    Govindaraj V, Keralapura Basavaraju R, Rao AJ. 2015. Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod. BioMed. Online 30:330310
    [Google Scholar]
  160. 160.
    Letourneau JM, Ebbel EE, Katz PP, Oktay KH, McCulloch CE et al. 2012. Acute ovarian failure underestimates age-specific reproductive impairment for young women undergoing chemotherapy for cancer. Cancer 118:7193339
    [Google Scholar]
  161. 161.
    Von Zglinicki T. 2002. Oxidative stress shortens telomeres. Trends Biochem. Sci. 27:733944
    [Google Scholar]
  162. 162.
    Xu X, Chen X, Zhang X, Liu Y, Wang Z et al. 2017. Impaired telomere length and telomerase activity in peripheral blood leukocytes and granulosa cells in patients with biochemical primary ovarian insufficiency. Hum. Reprod. 32:12017
    [Google Scholar]
  163. 163.
    Kim S, Parks CG, DeRoo LA, Chen H, Taylor JA et al. 2009. Obesity and weight gain in adulthood and telomere length. Cancer Epidemiol. Biomark. Prev. 18:381620
    [Google Scholar]
  164. 164.
    Yamada-Fukunaga T, Yamada M, Hamatani T, Chikazawa N, Ogawa S et al. 2013. Age-associated telomere shortening in mouse oocytes. Reprod. Biol. Endocrinol. 11:1108
    [Google Scholar]
  165. 165.
    Liu L, Trimarchi JR, Smith PJ, Keefe DL. 2002. Mitochondrial dysfunction leads to telomere attrition and genomic instability. Aging Cell 1:14046
    [Google Scholar]
  166. 166.
    Liu L, Bailey SM, Okuka M, Muñoz P, Li C et al. 2007. Telomere lengthening early in development. Nat. Cell Biol. 9:12143641
    [Google Scholar]
  167. 167.
    Yanowitz JL. 2008. Genome integrity is regulated by the Caenorhabditis elegans Rad51D homolog rfs-1. Genetics 179:124962
    [Google Scholar]
  168. 168.
    Robinson LG Jr., Pimentel R, Wang F, Kramer YG, Gonullu DC et al. 2020. Impaired reproductive function and fertility preservation in a woman with a dyskeratosis congenita. J. Assist. Reprod. Genet. 37:5122125
    [Google Scholar]
  169. 169.
    Fatehi AN. 2006. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J. Androl. 27:217688
    [Google Scholar]
  170. 170.
    Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D et al. 2002. Meiotic arrest and aneuploidy in MLH3-deficient mice. Nat. Genet. 31:438590
    [Google Scholar]
  171. 171.
    Intano GW. 2001. Mixed spermatogenic germ cell nuclear extracts exhibit high base excision repair activity. Nucleic Acids Res. 29:6136672
    [Google Scholar]
  172. 172.
    Smith TB, Dun MD, Smith ND, Curry BJ, Connaughton HS, Aitken RJ. 2013. The presence of a truncated base excision repair pathway in human spermatozoa that is mediated by OGG1. J. Cell Sci. 126:6148897
    [Google Scholar]
  173. 173.
    Talibova G, Bilmez Y, Ozturk S. 2022. DNA double-strand break repair in male germ cells during spermatogenesis and its association with male infertility development. DNA Repair 118:103386
    [Google Scholar]
  174. 174.
    Dai J, Voloshin O, Potapova S, Camerini-Otero RD. 2017. Meiotic knockdown and complementation reveals essential role of RAD51 in mouse spermatogenesis. Cell Rep. 18:6138394
    [Google Scholar]
  175. 175.
    Scully R, Panday A, Elango R, Willis NA. 2019. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20:11698714
    [Google Scholar]
  176. 176.
    Sakkas D, Seli E, Manicardi GC, Nijs M, Ombelet W, Bizzaro D. 2004. The presence of abnormal spermatozoa in the ejaculate: Did apoptosis fail?. Hum. Fertil. 7:299103
    [Google Scholar]
  177. 177.
    Chandley AC. 1991. On the parental origin of de novo mutation in man. J. Med. Genet. 28:421723
    [Google Scholar]
  178. 178.
    Matsuda Y, Tobari I. 1988. Chromosomal analysis in mouse eggs fertilized in vitro with sperma exposed to ultraviolet light (UV) and methyl and ethyl methanesulfonate (MMS and EMS). Mutat. Res. Fundam. Mol. Mech. Mutagen. 198:113144
    [Google Scholar]
  179. 179.
    Bizzaro D, Manicardi G, Bianchi PG, Sakkas D. 2000. Sperm decondensation during fertilisation in the mouse: presence of DNase I hypersensitive sites in situ and a putative role for topoisomerase II. Zygote 8:3197202
    [Google Scholar]
  180. 180.
    Derijck A, van der Heijden G, Giele M, Philippens M, de Boer P. 2008. DNA double-strand break repair in parental chromatin of mouse zygotes, the first cell cycle as an origin of de novo mutation. Hum. Mol. Genet. 17:13192237
    [Google Scholar]
  181. 181.
    Marchetti F, Essers J, Kanaar R, Wyrobek AJ. 2007. Disruption of maternal DNA repair increases sperm-derived chromosomal aberrations. PNAS 104:451772529
    [Google Scholar]
  182. 182.
    Reichenberg A, Gross R, Weiser M, Bresnahan M, Silverman J et al. 2006. Advancing paternal age and autism. Arch. Gen. Psychiatry 63:9102632
    [Google Scholar]
  183. 183.
    Malaspina D. 2001. Paternal factors and schizophrenia risk: de novo mutations and imprinting. Schizophr. Bull. 27:337993
    [Google Scholar]
  184. 184.
    Olshan AF, Schnitzer PG, Baird PA. 1994. Paternal age and the risk of congenital heart defects. Teratology 50:18084
    [Google Scholar]
  185. 185.
    Vestergaard M, Mork A, Madsen KM, Olsen J. 2005. Paternal age and epilepsy in the offspring. Eur. J. Epidemiol. 20:10035
    [Google Scholar]
  186. 186.
    Malaspina D, Reichenberg A, Weiser M, Fennig S, Davidson M et al. 2005. Paternal age and intelligence: implications for age-related genomic changes in male germ cells. Psychiatr. Genet. 15:211725
    [Google Scholar]
  187. 187.
    Conti SL, Eisenberg ML. 2016. Paternal aging and increased risk of congenital disease, psychiatric disorders, and cancer. Asian J. Androl. 18:342024
    [Google Scholar]
  188. 188.
    Crow JF. 2000. The origins, patterns and implications of human spontaneous mutation. Nat. Rev. Genet. 1:14047
    [Google Scholar]
  189. 189.
    Wilson Sayres MA, Makova KD. 2011. Genome analyses substantiate male mutation bias in many species. Bioessays 33:1293845
    [Google Scholar]
  190. 190.
    Rahbari R, Wuster A, Lindsay SJ, Hardwick RJ, Alexandrov LB et al. 2016. Timing, rates and spectra of human germline mutation. Nat. Genet. 48:212633
    [Google Scholar]
  191. 191.
    Francioli LC, Polak PP, Koren A, Menelaou A, Chun S et al. 2015. Genome-wide patterns and properties of de novo mutations in humans. Nat. Genet. 47:782226
    [Google Scholar]
  192. 192.
    Goldmann JM, Wong WSW, Pinelli M, Farrah T, Bodian D et al. 2016. Parent-of-origin-specific signatures of de novo mutations. Nat. Genet. 48:893539
    [Google Scholar]
  193. 193.
    Goriely A, Wilkie AOM. 2010. Missing heritability: paternal age effect mutations and selfish spermatogonia. Nat. Rev. Genet. 11:8589
    [Google Scholar]
  194. 194.
    Giannoulatou E, McVean G, Taylor IB, McGowan SJ, Maher GJ et al. 2013. Contributions of intrinsic mutation rate and selfish selection to levels of de novo HRAS mutations in the paternal germline. PNAS 110:502015257
    [Google Scholar]
  195. 195.
    Goriely A, Hansen RMS, Taylor IB, Olesen IA, Jacobsen GK et al. 2009. Activating mutations in FGFR3 and HRAS reveal a shared genetic origin for congenital disorders and testicular tumors. Nat. Genet. 41:11124752
    [Google Scholar]
  196. 196.
    Arnheim N, Calabrese P. 2009. Understanding what determines the frequency and pattern of human germline mutations. Nat. Rev. Genet. 10:747888
    [Google Scholar]
  197. 197.
    Dubrova YE, Sarapultseva EI. 2020. Radiation-induced transgenerational effects in animals. Int. J. Radiat. Biol. 98:6104753
    [Google Scholar]
  198. 198.
    Wakeford R. 2003. Childhood leukaemia and radiation exposure of fathers—the end of the road, perhaps?. J. Radiol. Prot. 23:435962
    [Google Scholar]
  199. 199.
    Barber RC, Hickenbotham P, Hatch T, Kelly D, Topchiy N et al. 2006. Radiation-induced transgenerational alterations in genome stability and DNA damage. Oncogene 25:56733642
    [Google Scholar]
  200. 200.
    Lord BI, Woolford LB, Wang L, Stones VA, McDonald D et al. 1998. Tumour induction by methyl-nitroso-urea following preconceptional paternal contamination with plutonium-239. Br. J. Cancer 78:330111
    [Google Scholar]
  201. 201.
    Wiley LM, Baulch JE, Raabe OG, Straume T. 1997. Impaired cell proliferation in mice that persists across at least two generations after paternal irradiation. Radiat. Res. 148:214551
    [Google Scholar]
  202. 202.
    Kropáčová K, Slovinská L, Mišúrová E. 2002. Cytogenetic changes in the liver of progeny of irradiated male rats. J. Radiat. Res. 43:212533
    [Google Scholar]
  203. 203.
    Laubenthal J, Zlobinskaya O, Poterlowicz K, Baumgartner A, Gdula MR et al. 2012. Cigarette smoke-induced transgenerational alterations in genome stability in cord blood of human F1 offspring. FASEB J. 26:10394656
    [Google Scholar]
  204. 204.
    Chavarro JE, Toth TL, Wright DL, Meeker JD, Hauser R. 2010. Body mass index in relation to semen quality, sperm DNA integrity, and serum reproductive hormone levels among men attending an infertility clinic. Fertil. Steril. 93:7222231
    [Google Scholar]
  205. 205.
    Whitaker RC, Wright JA, Pepe MS, Seidel KD, Dietz WH. 1997. Predicting obesity in young adulthood from childhood and parental obesity. N. Engl. J. Med. 337:1386973
    [Google Scholar]
  206. 206.
    Bakos HW, Mitchell M, Setchell BP, Lane M. 2011. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int. J. Androl. 34:5 part 140210
    [Google Scholar]
  207. 207.
    Castro-Jiménez , Orozco-Vargas LC. 2011. Parental exposure to carcinogens and risk for childhood acute lymphoblastic leukemia, Colombia, 2000–2005. Prevent. Chronic Dis. 8:5A106
    [Google Scholar]
  208. 208.
    Ji G, Yan L, Wu S, Liu J, Wang L et al. 2013. Bulky DNA adducts in human sperm associated with semen parameters and sperm DNA fragmentation in infertile men: a cross-sectional study. Environ. Health 12:82
    [Google Scholar]
  209. 209.
    Kumar M, Kumar K, Jain S, Hassan T, Dada R. 2013. Novel insights into the genetic and epigenetic paternal contribution to the human embryo. Clinics 68:514
    [Google Scholar]
  210. 210.
    Jans J, Schul W, Sert Y-G, Rijksen Y, Rebel H et al. 2005. Powerful skin cancer protection by a CPD-photolyase transgene. Curr. Biol. 15:210515
    [Google Scholar]
  211. 211.
    Roness H, Kalich-Philosoph L, Meirow D. 2014. Prevention of chemotherapy-induced ovarian damage: possible roles for hormonal and non-hormonal attenuating agents. Hum. Reprod. Update 20:575974
    [Google Scholar]
  212. 212.
    Hashimoto T, Horikawa DD, Saito Y, Kuwahara H, Kozuka-Hata H et al. 2016. Extremotolerant tardigrade genome and improved radiotolerance of human cultured cells by tardigrade-unique protein. Nat. Commun. 7:112808
    [Google Scholar]
  213. 213.
    Escarcega RD, Patil AA, Meyer MD, Moruno-Manchon JF, Silvagnoli AD et al. 2023. The Tardigrade damage suppressor protein Dsup promotes DNA damage in neurons. Mol. Cell. Neurosci. 125:103826
    [Google Scholar]
  214. 214.
    Bujarrabal-Dueso A, Sendtner G, Meyer DH, Chatzinikolaou G, Stratigi K et al. 2023. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat. Struct. Mol. Biol. 30:47588
    [Google Scholar]
  215. 215.
    Nguyen Q-N, Zerafa N, Liew SH, Morgan FH, Strasser A et al. 2018. Loss of PUMA protects the ovarian reserve during DNA-damaging chemotherapy and preserves fertility. Cell Death Dis. 9:6618
    [Google Scholar]
/content/journals/10.1146/annurev-pathmechdis-051122-093128
Loading
/content/journals/10.1146/annurev-pathmechdis-051122-093128
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error